
Automated Analysis of Protocols that use Authenticated Encryption:
How Subtle AEAD Differences can impact Protocol Security

Cas Cremers1, Alexander Dax1,3, Charlie Jacomme2, and Mang Zhao1,3

1CISPA Helmholtz Center for Information Security, Germany
2Inria Paris, France

3Saarland University

Abstract
Many modern security protocols such as TLS, WPA2, Wire-
Guard, and Signal use a cryptographic primitive called Au-
thenticated Encryption (optionally with Authenticated Data),
also known as an AEAD scheme. AEAD is a variant of sym-
metric encryption that additionally provides authentication.
While authentication may seem to be a straightforward ad-
ditional requirement, it has in fact turned out to be complex:
many different security notions for AEADs are still being pro-
posed, and several recent protocol-level attacks exploit subtle
behaviors that differ among real-world AEAD schemes.

We provide the first automated analysis method for pro-
tocols that use AEADs that can systematically find attacks
that exploit the subtleties of the specific type of AEAD used.
This can then be used to analyze specific protocols with a
fixed AEAD choice, or to provide guidance on which AEADs
might be (in)sufficient to make a protocol design secure. We
develop generic symbolic AEAD models, which we instanti-
ate for the Tamarin prover. Our approach can automatically
and efficiently discover protocol attacks that could previously
only be found using manual inspection, such as the Salaman-
der attack on Facebook’s message franking, and attacks on
SFrame and YubiHSM. Furthermore, our analysis reveals
undesirable behaviors of several other protocols.

1 Introduction

Authenticated Encryption (AE) and Authenticated Encryp-
tion with Associated Data (AEAD) are some of the most
commonly used cryptographic building blocks. AEAD prim-
itives are built from symmetric encryption primitives and
augmented with authentication mechanisms. Their applica-
tions include the vast majority of encrypted internet data, such
as in TLS, WPA2 from IEEE 802.11 (WiFi), WireGuard, and
by messaging apps such as Signal or WhatsApp. For example,
in TLS, TLSCiphertext is constructed from an AEAD applied
to a header and payload: both are authenticated, but only the
payload is encrypted, and the plaintext header includes the
content type and the ciphertext length.

While AEADs are ubiquitous in modern secure commu-
nications, there is no commonly agreed “strong” security
notion that they should satisfy. In fact, the current land-
scape of security notions for AEADs is rather chaotic: there
are many proposed frameworks and security notion vari-
ants [2–4, 8–10, 16, 18, 26, 31, 32, 43, 51, 55]. For some of
these notions, their implication relations are known [8], but
many of them are hard to compare for technical reasons.

In reality, there are good examples of recent protocol
attacks that exploit subtle properties of concrete AEAD
schemes, such as [26, 33, 42]. These have all been found
through manual inspection of the protocol and knowledge of
the particular AEAD scheme, such as exploiting the reuse of
a nonce, a number meant to be used only once. We would
like to formally prove the absence of such attacks: i.e., that
a protocol (e.g., TLS, WhatsApp, WPA2), when instantiated
with a specific AEAD (e.g., AES-GCM), satisfies a desired
security notion. At a methodological level, these attacks can
be hard to model because they require a methodology that is
not only precise enough to capture AEAD details (e.g. impact
of nonce reuse) but also scales well enough to allow for mod-
eling the often complex possible executions of a protocol that
determine whether such attack requirements can be met.

In this work, we develop the first systematic methodol-
ogy for the automated analysis of security protocols that can
find attacks that leverage subtle behaviors of concrete AEAD
schemes, or show their absence. For our methodology, we
leverage the TAMARIN prover [45], a symbolic protocol anal-
ysis tool, which we augment with novel fine-grained models
of AEAD primitives. This tool choice enables us to analyze
several non-trivial protocols. We also considered using tools
in the computational model (e.g., [6, 7, 13]), but these cur-
rently do not yet scale to the complexity of the protocols we
are interested in, and cannot find attacks.

One of the challenges in developing our models is that they
require finding middle ground between theoretical security
notions, weaknesseses exploited in practice, and suitability
for automated analysis. We identify the core theoretical and
practical concerns of AEADs, and use these to develop our

1

generic symbolic AEAD models. We notably identify how the
collision resistance of AEAD is a central issue of their design:
we illustrate how a lack of it leads to multiple attack classes,
and how satisfying collision resistance implies that many ex-
isting security notions are met. In our protocol case studies,
we rediscover previously reported attack classes, such as ac-
countability or authentication, but also identify a new attack
class concerning content agreement in group messaging sce-
narios: can a dishonest group member send a single message
that will be interpreted differently by multiple parties?

Contributions Our main contributions are the following:
• We develop the first systematic automated methodology

for analyzing security protocols that takes the subtle
properties of specific AEAD instantiations into account.

• In case studies, we show our methodology effectively
rediscovers known attacks on several protocols, includ-
ing YubiHSM [42], Facebook’s Message Franking [26],
and SFrame [33]. We also rediscover a theoretical attack
variant on Facebook’s Message Franking first mentioned
in [31]. Moreover, our analysis uncovers unexpected
behavior in WebPush [56], Whatsapp Group Messag-
ing [59], and Scuttlebutt [54].

• We formally prove the missing or conjectured relations
between existing AEAD security notions w.r.t. collision
resistance, completing the picture in the domain.

We provide the full formal TAMARIN models and analysis
scripts at [1].

Overview We first give background on AEADs in Section 2.
We build the foundations for our methodology by revisiting
the AEAD landscape and real-world attack patterns in Sec-
tion 3, and prove some missing relations between AEAD
notions. We then develop our symbolic modeling and analysis
approach in Section 4. We evaluate our approach on several
protocol case studies in Section 5. We discuss limitations in
Section 6 and describe further related work in Section 7. We
conclude in Section 8.

We give all proofs in the full version [20].

2 Background on AEADs and protocol attacks

The modern approach to protecting privacy and authenticity
of messages is to use authenticated encryption. This primi-
tive evolved as a variant of symmetric encryption that highly
efficiently offers two additional properties that are useful in
real-world applications: authentication of the encrypted data,
and concurrent authentication of some plaintext data. One
could in theory achieve this by using a combination of sym-
metric encryption and MACs, but AEADs are much more
efficient and ensure the authenticated part is strictly bound to
the encrypted-and-authenticated part.

The efficient combination of these constructions has proven
to be surprisingly intricate. In standard encryption it is de-
sirable that if Alice encrypts the same message twice, the
attacker cannot tell this from the ciphertexts. This property is
typically achieved by ensuring that when encrypting the next
message, some data x is integrated that was not used before,
ensuring uniqueness of the ciphertext. As we will see later,
this sometimes fails for various reasons, causing some x to be
re-used. Intuitively, we would hope that while the attacker is
now able to detect message re-encryption, there should not be
any further negative consequences. For some provably secure
AEADs, it turns out that the situation is worse.

Furthermore, much like symmetric encryption, AEADs in
real-world deployments typically construct and send cipher-
text incrementally. To start decrypting partial ciphertexts as
soon as possible, the syntax or API of some AEADs allows to
decouple decryption from the verification of authentication,
which can be helpful but also cause problems elsewhere.

Historically, Authenticated Encryption with Associated
Data (AEAD) was introduced by Rogaway [51] to entwine
privacy and authenticity for both messages and headers in a
single and compact mode. The definition of AEAD is given in
the nonce-based pattern, where the nonce is named after the
number that are supposed to be used only once. The nonce-
based AEADs are expected to relax the security requirements
of the randomized or counter-based pattern – ensuring no
reuse of the nonce during the encryption is sufficient for
privacy and authenticity. Moreover, Bellare and Hoang [9]
initialized the study on binding keys and other optional inputs
to the ciphertexts.

In this section, we first recall the formal syntax of AEADs
and the canonical privacy and integrity definitions in Sec-
tion 2.1. In Section 2.2, we review the main attacks on pro-
tocols based on subtle AEADs behaviors and weaknesses.
In Section 2.3, we summarize and classify the main AEAD
frameworks in the literature.

2.1 Formal AEAD syntax and requirements

Notations. We consider that all algorithms defined in this
paper are parameterized implicitly by the security parameter.
Let s←$ S denote sampling a variable s uniformly at random
from a set S. Let x←$ X denote the execution of a probabilistic
algorithm X followed by assigning the output to a variable
x. We write x← X if the algorithm X is deterministic. Let ⊥
denote an special error symbol that is not included in any set
in this paper. We use _ to denote a variable that is irrelevant.

In the presentation of this work, we focus on the defini-
tion of nonce-based AEADs. The main reason, besides re-
ducing complexity, is that randomness- and counter-based
AEADs can be cast as instances of nonce-based AEADs.
Looking ahead, all our symbolic models will cover nonce-
based AEADs and can then trivially be used to model ran-
domized or nonce-based AEADs.

2

Definition 1 ([51]). Let Key, Nonce, Header, Message,
Ciphertext respectively denote the space of keys, nonces,
headers (aka. associated data), messages, and ciphertexts.
An authenticated encryption with associated data scheme
AEAD= (KGen,Enc,Dec) is a tuple of algorithms where

• KGen the key generation algorithm outputs a symmetric
key k ∈ Key, i.e., k←$ KGen().

• Enc the encryption algorithm inputs a key k ∈ Key, a
nonce N ∈Nonce, a header H ∈Header, and a message
m and (deterministically) outputs a ciphertext c, i.e., c←
Enc(k,N,H,m).

• Dec the decryption algorithm inputs a key k ∈ Key, a
nonce N ∈ Nonce, a header H ∈ Header, and a cipher-
text c ∈ Ciphertext and deterministically outputs a mes-
sage m ∈Message∪{⊥}, i.e., m← Dec(k,N,H,c).

Over such schemes, the N,H and ciphertext c need to be
sent over the network1, and the correctness of the scheme
requires that the decryption of a ciphertext with the same
parameters N,H,k indeed returns the plaintext. We assume
that the decryption with inputs outside the corresponding
spaces must output ⊥.

The two core security guarantees are integrity and privacy.

Definition 2 (Privacy [51]). We say an AEAD =
(KGen,Enc,Dec) is ε-IND$-CPA secure, if the below defined
advantage of any attacker A against ExprIND$-CPA

AEAD experiment
in Fig. 1 is bounded by:

AdvIND$-CPA
AEAD := |Pr[ExprIND$-CPA

AEAD (A) = 1]− 1
2
| ≤ ε

Definition 3 (Integrity [51]). We say an AEAD = (KGen,
Enc,Dec) is ε-CTI-CPA secure, if the below defined ad-
vantage of any attacker A against ExprCTI-CPAAEAD experiment
in Fig. 2 is bounded by:

AdvCTI-CPAAEAD := Pr[ExprCTI-CPAAEAD (A) = 1]≤ ε

Both for integrity and privacy, we can define two security
variants, CTI-CCA and IND$-CCA, based on whether the at-
tacker also has access to a decryption oracle during the exper-
iment, see e.g., the definition of the experiment for CTI-CCA
in Fig. 2. We summarize the well-known relations in Fig. 3,
with the corresponding theorems in the long version [20] .

2.2 Historical real-world protocol attacks ex-
ploiting AEADs

Beside the well-studied privacy and integrity, some recent
attacks against practical application protocols suggest that

1We stress that AEAD schemes can be used offline in practice, where
nonces and headers both are hidden from attackers’ view. However, this paper
focuses on a more common case where the attackers might have access to
the nonce and headers, e.g., which are transmitted over network.

the underlying AEADs need an evolution to meet stronger
security guarantees. We identify six main classes of these
protocol attacks that have occurred in the wild and briefly
describe their high-level requirements.

A1 Nonce reuse attacks - While nonces are expected to be
used only once, this can fail in practice for three main reasons.
First, protocol designs might aim to establish nonces, but their
complex state machines may hide edge cases in which they
are in fact reused, as in e.g., WPA2 [57]. Second, the gener-
ation of nonces might involve external sources, which may
be unreliable, e.g., Yubikey [42] or Trustzone [55]. Third,
implementations may be flawed. For example, the Zerologon
attack [62] notably exploited the fact that the nonce underly-
ing the AES-CBF8 mode in Microsoft Netlogon protocol is
a constant string of zero bits. The encryption of a block of
zero bits equals to 016 with probability 1/256 for any key k,
breaking the authentication of windows servers.
A2 Padding oracle attacks [58] - Many AEADs and sym-
metric encryption schemes are constructed from block ciphers
and require the length of input messages to be multiple of
a fixed value. Messages whose length is not a multiple are
extended before encryption using a so-called padding scheme.
These can enable plaintext recovery attacks if the attacker has
a way to determine if a ciphertext is correctly padded or not,
e.g., through timing leaks or error messages. Padding oracle
attacks have found on many protocols, including SSL [17],
IPSec [25], and GPG [47].
A3 SSH fragmentation attacks [5] - SSH was designed
for securing Internet traffic over the unstable channel, where
ciphertext blocks in a packet might get lost. The length of a
SSH packet is encrypted in its first block. If the number of
delivered blocks is less than the length decrypted from the
first ciphertext block, no ciphertext integrity is executed.

If an attacker can inject the first ciphertext block and ob-
serve the error message reported by the SSH connection, then
the plaintext of the transmitted ciphertext can be recovered.
A4 Partitioning oracle attacks [43] - Some real-world ap-
plications do not sample the AEAD symmetric keys randomly
but simply pick users’ passwords. Thus, attackers might know
a set of possible password candidates and perform brute-force
attacks. Even worse, if attackers have access to a partitioning
oracle, which tells whether the password of a ciphertext be-
longs to some known sets, then the password can be recovered
exponentially faster.

In practice, attackers sometimes can obtain the partitioning
oracle by observing the reply messages responding to a se-
lected ciphertext. This causes the vulnerability of applications
in the real world, such as Shadowsocks [43].
A5 Salamander attack [26] - The end-to-end secure mes-
saging provides high security against the surveillance of the
server but potentially prevents the server from blocking the
abusive messages. To mitigate this, Facebook invents a abuse
report mechanism that allows each user to report the received
abusive messages from a claimed sender.

3

ExprIND$-CPA
AEAD :

1 b←$ {0,1}
2 Lc← /0

3 k←$ KGen()
4 b′←$ AENC()
5 return Jb= b′K

ExprIND$-CCA
AEAD :

1 b←$ {0,1}
2 Lc← /0

3 k←$ KGen()
4 b′←$ AENC,DEC()
5 return Jb= b′K

ENC(N,H,m):
6 if (N,H,m,_) ∈ Lc
7 return ⊥
8 if b= 0
9 c← Enc(k,N,H,m)

10 else c←$ {0,1}ℓ(|m|)
11 Lc← Lc ∪{(N,H,m,c)}
12 return c

DEC(N,H,c):
13 if (N,H,_,c) ∈ Lc
14 return ⊥
15 m←Dec(k,N,H,c)
16 if m ̸=⊥
17 Lc← Lc ∪{(N,H,m,c)}
18 return m

Figure 1: IND$-CPA and IND$-CCA security for an AEAD= (KGen,Enc,Dec) scheme.

ExprCTI-CPAAEAD :
1 Lc← /0

2 k←$ KGen()
3 (N,H,c)←$ AENC()
4 if c ∈ Lc
5 return 0
6 return JDec(k,N,H,c) ̸=⊥K

ExprCTI-CCAAEAD :
1 Lc← /0

2 k←$ KGen()
3 (N,H,c)←$ AENC,DEC()
4 if c ∈ Lc
5 return 0
6 return JDec(k,N,H,c) ̸=⊥K

ENC(N,H,m):
7 c← Enc(k,N,H,m)
8 Lc← Lc ∪{c}
9 return c
DEC(N,H,c):
10 return Dec(N,H,c)

Figure 2: CTI-CPA and CTI-CCA security for an AEAD= (KGen,Enc,Dec) scheme.

Figure 3: The relation between integrity and privacy for AEAD.

However, this mechanism turns out to be broken because
a malicious sender could send a single encrypted attachment
that would decrypt to both an abusive message and an innocent
message under two distinct keys.
A6 Sframe attack [33] - An AEAD scheme authenticates
the owners of a symmetric key of a ciphertext rather than
the sender’s identity. This is especially relevant for group
communication, where an AEAD cannot use the shared group
key to authenticate the specific sender. To provide sender
authenticity in groups, while keeping low bandwidth cost, the
IETF SFrame protocol v01 [49] requires senders to sign a
portion of the AEAD ciphertext using digital signatures.

Unfortunately, the sender identity authenticity of SFrame
mechanism turns out to be broken, since the underlying AEAD
schemes, AES-CM-HMAC and AES-GCM, do not provide
collision resistance for the unsigned portion. This means, a
malicious group member holding the symmetric key can forge
the unsigned portion of other group members’ ciphertexts.

2.3 Theoretical AEAD frameworks

Apart from the previously outlined classes of real-word at-
tacks linked to AEADs, on the theoretical side, many variants

of AEADs have been designed in the past twenty years follow-
ing the seminal work from [51]. Each of those variants come
with their own flavors of properties like, e.g., integrity, con-
fidentiality, nonce-misuse resistance, or robustness, leading
to dozens of distinct security definitions. Furthermore, these
AEAD variants differ in functionality, with some enabling e.g.
ciphertext fragmentation or nonce-hiding. We categorize the
main differences between distinct AEAD variants as follows:

F1 does each ciphertext (or a part of it) bind to a set of its
encryption inputs? This question motivates the study of a
novel (compactly) committing AEAD (ccAEAD [20, Defini-
tion 6]) regime as well as various security properties, such as
collision resistance [20, Definition 9] , commitment [20, Def-
inition 10] , sender binding [20, Definition 14] , and receiver
binding [20, Definition 15] [3, 9, 26, 31]. Roughly speak-
ing, the collision resistance prevents the collisions between
AEAD encryption with different inputs. The commitment
ensures that each valid AEAD decryption indicates the agree-
ment on a subset of its encryption/decryption inputs. The
sender- and receiver binding properties are relevant in the
abuse-reporting scenarios. While the sender binding allows
every ccAEAD receiver to report abusive messages, the re-
ceiver binding prevents malicious receivers from framing
honest ccAEAD senders. We give their full definitions in the
long version [20] - motivated by A5.
F2 can we find collisions on valid decryption inputs for the
same ciphertext? This question motivates the study of a novel
property called robustness [2, 43]. Briefly speaking, robust-
ness prevents attackers from having a single ciphertext de-
crypt to multiple distinct valid messages on different inputs. -
motivated by A4, A6.
F3 is the AEAD supporting fragmentation of the ciphertexts?
That is, can we start decrypting chunks of data before having
verified the whole ciphertext?

4

F4 is the decryption atomic, or split into a decryption and an
integrity check? [8] - motivated by A2.
F5 is the AEAD nonce-hiding? That is, is the nonce explicitly
needed for the decryption, or is it included and hidden inside
the ciphertexts? [10, 18]
F6 is the AEAD nonce-misuse resistant? [32] Must a nonce
be used once strictly, or can repeat? - motivated by A1.

3 Generalizing real-world AEAD (in)security
for systematic analysis

In this section we develop systematic generalizations of
AEAD security and weaknesses, which form the foundation
of the symbolic models that we will design in Section 4.

In the previous section we recalled attack classes and se-
curity frameworks from the literature. However, these do
not exist within a single systematic framework, and basing
our symbolic modeling on them would lead to incompara-
ble and ad-hoc models. For our more systematic approach,
we first identify the core properties of concrete real life
AEAD schemes that lead to the attacks: privacy and integrity,
collision-resistance, and nonce-misuse resistance. We show
the relevance of these four points by:

• providing in Table 1 the security and weaknesses of
many widely deployed AEADs with respect to those
core properties;

• illustrating how collision resistance theoretically allows
covering notions from F1 and F2 in Section 3.2; and

• summarizing the concrete existing collision capabilities
for deployed AEADs.

In particular, we identify the collision resistance property as
a central concern, which we then investigate first from the
theoretical and then the practical point of view.

3.1 Core properties

Stepping back from the many theoretical definitions, we iden-
tify three main causes for the protocol attacks:

• A1 comes from a misuse of nonces.
• A2 and A3 from a decryption misuse, where the decryp-

tion is not atomic but performed in two steps, in which
case we lose the integrity and privacy guarantees.

• A4, A5, and A6 actually all stem from a lack of collision-
resistance

This leads us to summarizing the concrete security guaran-
tees for AEADs in three categories:

• privacy and integrity - the core guarantees that we
defined previously, and are expected to be met by all
AEADs. This is what is lost under decryption misuse.

• collision-resistance - this guarantee hinders attackers
from coming up with collisions over the output of Enc,
i.e. find two distinct sets of inputs i⃗1 and i⃗2 such that
Enc(⃗i1) = Enc(⃗i2).

• nonce-misuse resistance - this guarantees that using a
weak nonce twice or the same nonce for distinct message
does not lead to a compromise.

With respect to those core properties, we provide in Ta-
ble 1 the security and weaknesses of many widely deployed
AEADs. In addition to the concrete constructions, we also pro-
vide in this table the generic constructions of AEAD such as
Encrypt then Mac (EtM), whose security guarantees depend
on the concrete encryption and MAC algorithm instantiations.
For the generic construction EtM, we distinguish two cases
based on whether the encryption and mac keys are related, e.g.
derived from k with a key derivation function, or unrelated,
e.g. simply the first and the second half of the input k.

Notably, while all of AEADs in the table do provide in-
tegrity and privacy (otherwise they would not be used), only
some of them tolerate that a single nonce is reused twice for
different messages. Moreover, we can also observe that the
picture for collision-resistance is very disparate and many
deployed schemes do not meet it.

The nonce-misuse, privacy, and integrity properties are now
well-understood in the community. In contrast, the collision
part is more nascent: there are multiple variants for it on
the security notions side, and in practice the concrete weak-
nesses have not been systematized. In this section, we carry
on clarifying the theoretical and practical implications of
collision-resistance of AEADs.

3.2 Generalizing AEAD collision resistance
and relations

We consider the CMT-4 definition in [9] as a natural definition
for full collision resistance and recall it below. Roughly speak-
ing, full collision resistance means that each AEAD ciphertext
can only be computed by unique input. While this appears as
a strong property, its absence may introduce surprising behav-
iors for some protocols. Looking forward, this is illustrated
by some known attacks or our case-studies, which seem to
indicate that despite its strength, full collision resistance is a
meaningful and desirable notion.

Definition 4 (Full Collision Resistance). We say an AEAD=
(KGen,Enc,Dec) has ε-full collision resistance (or ε-full-CR
), if the below defined advantage of any attacker A against
the Exprfull-CRAEAD experiment in Fig. 4 is bounded by

Advfull-CRAEAD := Pr[Exprfull-CRAEAD (A) = 1]≤ ε

Relationship with existing frameworks It turns out that
this notion of collision resistance, while straightforward, is
enough to cover in practice multiple notions of the literature
from [3, 9, 29, 31, 43]. Informally, these notions are:

• tidyness - for a fixed key, is the encryption function the
inverse of the decryption one? It implies that collisions
over encryptions or decryptions are equivalent.

5

Concrete AEAD Integrity and Privacy Full Collision Resistance Nonce Misuse Resistance

XSalsa20-Poly1305 • ✗ [3] ✗ Xor of plaintexts
AES-GCM ✓ [34, 44] ✗ [26] ✗ Forgeability + xor of plaintexts
ChaCha20-Poly1305 ✓ [50] ✗ [3] ✗ Xor of plaintexts
OCB3 ✓ [12, 41] ✗ [3] ✗ Forgeability + equality of blocks
EtM (unrelated keys) ✓ [51] ✗ [31]4 ✗ Encryption dependent
AES-CCM ✓ [30, 37] • ✗ Xor of plaintexts
AES-EAX ✓ [11, 46] • ✗ Xor of plaintexts
EtM (related keys) ✓ [51] ✓ [31] ✗ Encryption dependent
CAU-C4 ✓ [9] ✓ [9] ✗ Forgeability + Xor of plaintexts
AES-GCM-SIV ✓ [32, 35] ✗ [3] ✓ [32]
CAU-SIV-C4 ✓ [9] ✓ [9] ✓ [9]

✓ : proven in the cited work(s). • : we conjecture that this holds, but do not know of a proof.
✗ : does not hold, with reference or explanation of counterexample.

Table 1: AEADs (in)-security guarantees: Integrity and Privacy refers to IND$-CPA and CTI-CPA. Full Collision Resistance refers to
Definition 4. For Nonce Misuse Resistance we indicate the potential impact of reusing nonces if the AEAD scheme does not have this property.

Exprfull-CRAEAD :

1
(
(k1,N1,H1,m1),(k2,N2,H2,m2)

)
←$ A()

2 if ⊥ ∈ {k1,N1,H1,m1,k2,N2,H2,m2} or (k1,N1,H1,m1) = (k2,N2,H2,m2)
3 return 0
4 c1← Enc(k1,N1,H1,m1), c2← Enc(k2,N2,H2,m2)
5 return Jc1 = c2K

Figure 4: full-CR security for an AEAD= (KGen,Enc,Dec).

• commitment (CMT-l and CMTD-l for l ∈ {1,3,4} [9])
- can we find collisions either over the encryption or
the decryption, with different parts of the inputs being
allowed to stay fixed based on l? In order to capture more
variants in this property class that are not included in [9],
in this paper we rename CMT-l to collision resistance
(X-CR) andCMTD-l to input bound ciphertexts (X-IBC),
where X⊆ (k,N,H,m)2 denotes the inputs that a AEAD
scheme commits to. We recall the definitions of X-CR
and X-IBC respectively in [20, Definition 9] and [20,
Definition 10] and their relations in [20, Theorem 3] .
In particular, the full-CR in Definition 4 is identical to
(k,N,H,m)-CR in [20, Definition 9] 3.

• full robustness (FROB [29]) and even fuller robustness
(eFROB [31]) - is any attacker able to compute a cipher-
text that decrypts correctly under two distinct inputs?
This notion was initially defined for randomized AEADs.
In this paper, we extend the robustness notions FROB
and eFROB for randomized AEADs to a unified notion
X-FROB for nonce-based AEADs in [20, Definition 12]

2Here, we slightly abuse notation and use (·) to denote a set. Thus, by
X ⊆ (k,N,H,m) we mean that X is a subset of the set (k,N,H,m). For a
single element set, we sometimes also omit the parenthesis and regard it as a
single element. For instance, we write k ∈ X⇔ (k)⊆ X.

3In [20, Theorem 4] we will show that (k,N,H,m)-CR implies all vari-
ants, which motivated our choice to abbreviate (k,N,H,m)-CR to full-CR.

, where X ⊆ (k,N,H,m) denotes the degree of robust-
ness. Moreover, we prove that X-FROB is equivalent to
X-IBC in [20, Theorem 6] .

• key committing KC security [3] - is any attacker able
to compute a ciphertext that decrypts correctly under
different keys but same nonce? In this paper, we recall
the KC definition in [20, Definition 13] and show that
X-FROB with k ∈ X implies KC, while the reverse does
not hold, in [20, Theorem 7] .

• multi-key collision resistance (MKCR) [43] - is any at-
tacker able to compute a ciphertext that decrypts cor-
rectly under multiple keys but same nonce and header?
The MKCR is parameterized by the number of distinct
keys κ ≥ 2. In this paper, we focus on the simplified
case where κ = 2. We recall the MKCR definition in
[20, Definition 13] and show that KC implies the simpli-
fied MKCR, while the reverse does not hold, in [20, The-
orem 7] .

• receiver binding (r-BIND) [31] - is any attacker able
to compute a ciphertext that can be verified under the
different header and message? This notion was initially
defined for a variant of compactly committing AEAD
(ccAEAD), and showed how it can be instantiated for
instance with an Encrypt then Mac construction4. Note
that [31] also introduces how to transform any AEAD
to ccAEAD by a “traditionally committing encryption"
approach (ccAEAD[AEAD]). In this paper, we recall the
r-BIND definition in [20, Definition 15] and show its
relations with other security notions (in this list) in [20,
Theorem 8] and [20, Theorem 9] .

We provide the full relations between the above notions in

4 [31] proposes to use HMAC-SHA256 to instantiate a keyed ran-
dom oracle, which is technically false without an additional assumption,
as HMAC(k,m) = HMAC(H(k),m) whenever k is bigger than 256 bits.

6

the theorem below, which is illustrated in Fig. 5. We give the
detailed proofs in the longer version [20] . While some of
the relations were conjectured before ([9]), we are the first to
provide the full proofs, as well as provide generalizations of
some notions to enable a comparison.

Theorem (Informal). For any AEAD scheme, we have that
1. X-FROB implies X-CR for any X ⊆ (k,N,H,m). If

AEAD is tidy, the reverse also holds. See [20, Theo-
rem 3] .

2. X-FROB/X-CR/X-IBC resp. implies X′-FROB/X′-CR/
X′-IBC for any X′ ⊆X⊆ (k,N,H,m). See [20, Theorem
4] .

3. X-FROB and X-IBC are equivalent for any X ⊆
(k,N,H,m). See [20, Theorem 5] .

4. k-FROB implies KC but not in reverse. See [20, Theo-
rem 6] .

5. KC implies MKCR but not in reverse. See [20, Theorem
7] .

6. (H,m)-FROB of AEAD implies r-BIND of
ccAEAD[AEAD]. r-BIND of ccAEAD[AEAD] implies
X-FROB of AEAD for any X⊆ (H,m). See [20, Theo-
rem 8] .

7. Neither KC nor MKCR of AEAD implies r-BIND of
ccAEAD[AEAD]. The reserve is same. See [20, The-
orem 9] .

Figure 5: The relation between collision related properties for AEAD
with key space Key. The black arrow→ indicates the general impli-
cation. The purple dash-dotted arrow indicates the implication
for tidy AEAD. The orange dash-dot-dotted arrow indicates
the implication for ccAEAD[AEAD]. The X in the figure is a sub-
set of (k,N,H,m), i.e., X⊆ (k,N,H,m). The theorems highlighted
with red color are claimed or proven in other papers. The theorems
highlighted with green color are part of our third contribution.

Note that [20, Theorem 3] was proven in [9]. [20, Theo-
rem 6] and [20, Theorem 8] were respectively claimed in [9]
and [31] without giving any proofs. Proofs for [20, Theorems
4,5,7 and 9] are part of our third contribution. Recall that we
have (k,N,H,m)-CR = full-CR in this figure. This theorem
indicates that the full collision resistance implies all other
existing notions in this figure under the tidyness assumption,
which is in fact met by all classical constructions.

3.3 Collision attacks on deployed AEADs
In general, any kind of collision between two ciphertexts can
lead to a security issue, and we will advocate that general
use AEADs should be fully resistant to collisions. However,
many popular deployed AEADs do not meet the full colli-
sion resistance, as shown in Table 1. Below, we recall the
known attacks against various kinds of collision resistances
of different AEAD schemes in the literature.

1. r-BIND: [31] shows a generic attack against any EtM
construction with unrelated keys by finding the second
key that causes collision by . This attack also applies
to real-world modes using Carter-Wegman MACs, e.g.,
GCM and ChaCha20-Poly1305. [26] shows a concrete
attack against AES-GCM and OCB by finding the nonce
that causes collision and sketches an faster attack by
doing birthday attack on keys. Moreover, at the hand of
a corollary of Theorem 1 in [52], [26] claims that this
attack also applies to any so-called rate-1 AEAD, that is,
“one blockcipher call per block of message" [26]. This
potentially indicates the vulnerability of AES-GCM-SIV
and ChaCha20-Poly1305 and any EtM constructions.

2. KC: [3] extends the known attack in [26] against
AES-GCM to new proof-of-concept attacks against
several commonly used AEAD, including AES-GCM,
ChaCha20-Poly1305, AES-GCM-SIV, and OCB3. This
attack shows how to create ciphertext collision on two
distinct keys. Then, [3] also shows that their new attacks
also make impacts in some real-world scenarios, such as
the binary polyglots setting.

3. MKCR: [43] shows a novel partitioning oracle attack
that feasibly breaks the MKCR security with param-
eter κ ≥ 2 of widely used AEAD schemes, including
AES-GCM, AES-GCM-SIV, ChaCha20-Poly1305, and
XSalsa20-Poly1305.

4. X-CR and X-IBC: [9] finds that all above attacks also
break the k-CR and -IBC security of respective AEAD
schemes. Thus, AES-GCM, AES-GCM-SIV, XSalsa20-
Poly1305, and ChaCha20-Poly1305 and OCB are all
k-CR insecure, i.e., CMT-1-insecure in [9].

4 Symbolic models for automated verification

We next describe how, using the generalizations we devel-
oped in the previous section, to develop symbolic models for
AEADs that encompass many of the essential weaknesses
from Section 2.2. For each essential weakness, we will de-
velop a specific model that gives the attacker the power to use
the given weakness, and analyzing a protocol with those weak-
nesses enabled will then allow us to automatically find attacks
on protocols that may rely on subtle AEAD weaknesses.

Our models cover:
• collisions Coll- covering A4, A5, A6, and definitions

from F1 and F2.

7

AEAD nColl KeysColl

AES-GCM [26] [3, 26, 31, 43]
AES-GCM-SIV [26] [3, 26, 31, 43]
ChaCha20-Poly1305 [26] [3, 26, 31, 43]
Encrypt-then-MAC (EtM) [26] [26, 31]

Table 2: Effective attacks against collision resistance of several
AEADs in the literature. nColl describe collisions where, for given
keys and a header, the attacker uses brute-force over the nonce to
produce colliding ciphertexts. In KeysColl, the attacker brute-forces,
given a nonce and header, over the keys.
For the generic Encrypt-then-MAC paradigm we give concrete at-
tacks for CTR, OFB, CBC, and CFB modes in the full version [20] .

• nonce reuse NR- covering A1 and F6
• decryption misuse Forge- covering A2, A3, F3 and F4

Some modern protocols, like [26] or [49], rely on additional
features of AEADs that we cover in a modular fashion:

• explicit tag Tag- for most AEADs, one can extract a
verification tag from the ciphertext, needed to model
protocols like [49] for A6.

• explicit commit Com- to extract a value from the cipher-
text committing to the inputs of the encryption. Needed
to model protocols like [26] covering A5 and F1.

Collisions can then be lifted to the tag or the commit in a
modular fashion, and are essentially only impacting on the
complexity of mounting concrete attacks.

We additionally build a model Leak that provides an ex-
plicit capability to reveal the nonce used for encryption to
the attacker. Not sending out the nonce by default but using a
dedicated functionality allows accounting for nonce hiding
AEADs covering F5. While we cannot claim completeness of
our models w.r.t. to all possible AEAD weaknesses that may
arise in the future, we provide a set of models based on our
analysis of the real-world security of AEADs Section 3 that
covers most practical attacks.

We develop and specify the previously enumerated mod-
els of AEADs in the symbolic model of cryptography, an
abstract model used in the formal methods community to
express and automate the analysis of cryptographic proto-
cols in Section 4.1. We then present symbolic models of the
before-mentioned AEAD weaknesses in Section 4.2.

4.1 The symbolic model of cryptography
The symbolic model uses function symbols to denote algo-
rithms, and capture their properties through equations. For
instance, an encryption is modeled by two binary function
symbols enc and dec, with the equation:

dec(enc(k,m),k) = m

Note that the randomness or nonce is not explicit in this classi-
cal modeling. And crucially, in the symbolic model, only the

equations that are explicitly specified imply equalities. This
results in the so-called perfect cryptography assumption: in
the previous example, the encryption is perfect, in the sense
that given enc(k,m) and not k, the attacker learns absolutely
nothing about m or k as it cannot apply the decryption equa-
tion. The attacker cannot change the content of the message,
and no collisions will exist.

While the previous assumption may seem too restrictive,
it allows for highly automated tools which are one of the
strengths of the symbolic model. These tools were already
successfully used to automatically find attacks on proto-
cols [23,60] and aid standardization processes to avoid design-
level flaws [21, 24, 48].

In recent years, effort was put into improving the symbolic
model with better and more fine-grained support for cryp-
tographic primitives. [22] introduced a stronger version of
symbolic Diffie-Hellman group models, while [19] and [36]
gave more fine-grained models of cryptographic hash func-
tions and digital signatures, respectively.

4.2 Symbolic AEAD models

We first explicitly model all the input parameters, making
the enc and dec having four inputs, enc(k,n,h,m). Then, we
model the multiple weaknesses previously discussed. While
we focus on providing models for nonce-based AEADs, as
it is the most fine-grained model of AEADs, it is easy to
derive from them models for counter-based or randomized
AEADs. They can typically be modelled by removing the
explicit nonce as enc(k,h,m), and all equations or capabilites
given in the following and that do not directly relate to the
nonce can be transposed to this case.

Practical Collision models Coll We start by adding colli-
sion capabilities that match the known real-world collision
capabilities. When using these models reports an attack on
the protocol in one of the automated tools, we can then inves-
tigate its feasibility in practice based on the concrete AEAD
used and the message encodings by referring to Section 3,
and in particular Table 2.

We start with the capability that can be reasonably com-
puted on many AEADs and was shown to be practical by [26]
for Facebook’s Message Franking protocol. As an example,
consider the scenario where an attacker tries to produce some
colliding ciphertexts given two keys. One option would be to
brute-force over the nonce for a fixed header, e.g., an empty
header. If successful, the attacker would have a ciphertext
that could be decrypted to distinct plaintexts under a common
nonce and header using the two keys. We model this nonce
finding algorithm in the symbolic model as an additional func-
tion symbol cn, modeling the colliding nonce, which will take
as input all the given parameters the collision depends on. We

8

then add the collision model nColl:

enc(k1,cn(k1,k2,h,m1,m2),h,m1)
= enc(k2,cn(k1,k2,h,m1,m2),h,m2)

(nColl)

Another widespread collision capability is captured by
adding two function symbols c1

k and c2
k with the collision

model KeysColl:

enc(c1
k(n,h,m1,m2),n,h,m1)

= enc(c2
k(n,h,m1,m2),n,h,m2)

(KeysColl)

To check whether a potential attack found using KeysColl
might be feasible, refer to Table 2. Whereas for KeysColl the
attacker needs to produce a collision on the AEAD for a fixed
nonce and header, the same kind of collision appears also to
be feasible in the case where one of the keys is already fixed.
We model this slight variation of KeysColl as well (KeyColl).

Notice that we, for instance, set that the two colliding en-
cryptions may necessarily use the same nonce and header in
those equations. This is caused by many existing protocols
implementing that nonces and associated data can be com-
puted independently by the parties, or that they cannot be sent
out twice with distinct values.

Generic Collision models FullColl The previous collision
models allow to efficiently check for the collisions that are
most likely to be practical for existing AEADs and given their
use in protocols. While obtaining an attack in those models
is instantly interesting, we may miss some future practical
attacks. Indeed, as illustrated by Table 1, most AEADs do not
meet the full collision resistance property. As we in fact do not
know if they meet any kind of collision resistance properties
as no proofs exists for many of them, it is possible that in the
coming years, new practical ways of building collisions on
the existing AEADs are discovered. As such, from a security
point of view, for any non collision resistant AEADs, it is
prudent to consider that many more collisions are possible
than currently practical.

Our approach makes it easy to define such a prudent model,
and capture all attacks that may be possible on a protocol
if the AEADs is not fully collision resistant. We do this
by allowing more collisions and changing which part of the
encryption input is fixed on both sides, and which part the
attacker is brute-forcing over.

enc(k,n,h,m)
= enc(gen-ck(n,n2,h,h2,m,m2),n2,h2,m2)

(FullKeyColl)

enc(k,n,h,m)
= enc(k2,n2,h2,gen-cm(k,k2,n,n2,h,h2))

(Full-mColl)

enc(k,n,h,m)
= enc(k2,gen-cn(k,k2,h,h2,m,m2),h2,m2)

(Full-nColl)

enc(k,n,h,m)
= enc(k2,n2,gen-ch(k,k2n,n2,m,m2),m2)

(Full-adColl)

With FullKeyColl, Full-mColl, Full-nColl, and Full-adColl, we
capture the capability of an attacker to find collisions by just
finding one distinct k, n, h, or m, respectively. These models
may cover collisions that are impractical as their main purpose
is to check whether the analyzed protocol relies on collision
resistance of AEAD schemes. Indeed, if we get an attack
in such a model, it implies that a strong collision resistance
notion is needed to prove the security of the protocol in the
computational model. Further, and as we see later in Section 5,
some of these attack may even be practical and could not have
been easily discovered in another way.

Nonce-reuse NR The nonce-reuse issue A1 is slightly more
complex to model, as we cannot capture it using an equation.
We thus have to use a less classical way to model primitives:
we model the attacker capability by providing access to an
additional process, or oracle, that does the following:

if k1 = k2 & n1 = n2 :

if m1 ̸= m2 | h1 ̸= h2 :

k← k1

k-NR
enc(k1,n1,h1,m1)

enc(k2,n2,h2,m2)

k

In this oracle, the attacker can provide two ciphertexts. If
those ciphertexts are encrypted under the same key and nonce
but differ in either header of message, the attacker learns the
secret encryption key. Similar to the collision model, Coll,
we included a model of this process into our set of AEAD
models and call it k-NR. This process models the strongest
possible leak, namely leakage of the secret key. We can also
make it more fine-grained by leaking, e.g., m1⊕m2 instead
of k. As not all tools in the symbolic model provide sup-
port for exclusive-or like equations, we modeled an over-
approximation m-NR, which leaks both m1 and m2 as an ex-
ample. Note that with these kinds of oracle-like models, the
concrete leaked values can be decided by the capabilities of
the chosen tool and the actual weaknesses listed in Table 1.

Decryption Misuses Forge Some protocols, notably SSH,
that allow for ciphertext fragmentation, also use AEADs in a
non-recommended way by splitting the atomic dec operation
into verification and decryption. This may also be the case for
protocols building their own AEAD based on the EtM con-
struction. In such a case, instead of dec that checks integrity,
we use a weak decryption function w-dec and a verification
function verify, with the equations:

w-dec(k,n,h,enc(k,n,h,m)) = m
verify(enc(k,n,h,m),k,n,h,m) = true

We model the fact that the decryption is weak by making
decryption succeed on messages forged by the attacker using

9

the forge algorithm:

w-dec(k2,n2,h2,forge(enc(k,n,h,m),m2)) = m2

Remark that a limitation of this Forge model is that the at-
tacker cannot compute a valid ciphertext for some function of
the message m, which is sometimes possible. Assume that for
a given protocol we know that plaintexts are pairs of elements,
denoted by < x,y >, we can also add dedicated forgery rules:

w-dec(k2,n2,h2,forge1(enc(k,n,h,< m1,m2 >))) = m1
w-dec(k2,n2,h2,forge2(enc(k,n,h,< m1,m2 >))) = m2

If the encryption is XOR based, the attacker should also
be able to encrypt at this stage any XOR of a value to the
ciphertext. This limitation notably implies that we cannot
cover in general premature release of ciphertexts or the SSH
fragmentation attacks. While we can do this for particular
cases as illustrated, lifting this limitation generically in the
symbolic model requires advances in the existing tools and
symbolic techniques that we consider out of scope for this
work.

Explicit Tag Tag Despite the recommendations, some pro-
tocols do not use AEADs only through a decryption and en-
cryption API, but actually rely on some more low-level detail.
For instance, schemes rely on the fact that the ciphertext is
often a pair (encryption, tag), where the encryption is a basic
symmetric encryption of the message and the tag is what pro-
vides the integrity. Instead of going to such a low-level, which
would be AEAD dependent, we capture this possibility mod-
ularly by adding a new function symbol get_tag, that inputs
ciphertext enc(k,n,h,m). We can then model collisions over
the tags, by adding a variant of each of the previous collision
equations over the tag, with, e.g., nTag being:

get_tag(enc(k1,cn(k1,k2,h,m1,m2),h,m1))
= get_tag(enc(k2,cn(k1,k2,h,m1,m2),h,m2))

Reasoning about explicit tags allows for a top-down approach
rather than bottom up. For example, it allows us to ignore im-
plementation details, such as to which side of the encryption
the tag is concatenated.

Explicit commitment Com We model compactly commit-
ting AEADs by adding a get-commit function symbol sim-
ilar to the get_tag. Once again, this allows for a modular
model of compactly committing AEADs, where we only spec-
ify that a commitment can be extracted, but do not specify
how. This extraction can be combined with the collision capa-
bilities to model non-committing AEADs, as a collision on
the ciphertexts directly translates to a collision on the com-
mitment. Modeling the fact that the collisions are only on the
commitment in a more fine grained way would be possible,
but would not yield better attack finding capabilities as they

are covered by the ciphertexts collisions. Further, it appears
that collisions on the ciphertext or the commitment only dif-
fer in the ease of mounting attacks, the commitment being
smaller and easier to manipulate than the whole cipher.

Nonce-Leaking Leak Following F5, we capture that an
AEAD may not hide the nonce by adding a nonce extraction
function symbol get_nonce along with the needed equation:

get_nonce(enc(k,n,h,m)) = n

This equation can now be also used instead of sending the
nonce to the network explicitly.

Concrete encodings for tools We presented here general
equations that can be used to capture multiple AEAD weak-
nesses in symbolic models. However, symbolic analysis tools
often have restrictions on the type of equations that are sup-
ported. The equations most efficiently supported by tools
satisfy the so called subterm convergence property: the right
hand side of the equation only contains terms that occur as
subterms in the left-hand side. This is not the case for all
equations we introduced. However, all of them can be ex-
pressed in an equivalent fashion using only subterm conver-
gent equations. For instance, for the nColl equation, which is
not subterm convergent, the same attacker capability can be
captured with the following equations, where we introduce a
new function symbol c as an encoding artifact:

enc(k1,cn(ct(k1,k2,h,m1,m2)),h,m1)
= ct(k1,k2,h,m1,m2)

enc(k2,cn(ct(k1,k2,h,m1,m2)),h,m2)
= ct(k1,k2,h,m1,m2)

(nColl− subterm)

4.3 Automated analysis methodology

We now have a set of models to capture multiple weaknesses
of AEADs. To analyze a protocol, the following steps should
be followed with the symbolic tool of choice:

1. Verify the protocol in all possible threat models (mali-
cious participants, AEADs weaknesses)

2. If there is an attack based on collisions or nonce misuse,
check which AEAD the protocol is using and whether it
has the corresponding weakness (Table 1);

3. If an attack is from KeyColl,KeysColl, or nColl, use Sec-
tion 3.3 to check whether the use AEAD is non collision
resistant. If it is not, check Table 2 to evaluate if the
attack is practical or not.

4. If an attack is from one of the over-approximated capabil-
ities FullKeyColl,Full-mColl,Full-nColl, Full-adColl, there
are two consequences:

• Collision Resistance is probably needed to prove
the protocol computationally secure.

10

• The attack may however be impractical, and one
needs to check the trace to see if the attacker can
have enough control over the ciphertext inputs to
create a collision.

False attacks In the previously outlined methodology, we
say that an attack found in our TAMARIN models may not be
a true attack. To provide more details: during modeling, we
sometimes on purpose overapproximate the possible AEAD
weaknesses, both to completely rule out classes of attacks or
detect subtle attacks. This may indeed lead to us finding “false
attacks” that are possible on the design of the protocol but not
on all possible implementations for all concrete primitives.
In such cases, when by following the methodology we get
an attack trace, we have to carefully inspect it, and identify
precisely whether it could lead to an attack on the concrete
protocol. This typically depends on details of the plaintext
encoding used by the protocol (json, concatenation, lengths,
etc).

The TAMARIN prover Our methodology is generalized
enough to not be bound to a specific tool. The tool of
choice needs to support custom equational theories and ex-
plicit means to express attacker knowledge. These are cri-
teria fulfilled by various state-of-the-art symbolic tools like
[15, 27, 39]. We chose the TAMARIN prover [45] to demon-
strate our methodology, as it offers a straightforward way
to add custom equational theories and oracle-like processes
needed for NR.

Automated analysis setup We split the models from Sec-
tion 4 into two general classes:

1. collisions and nonce misuse (Coll, NR, Leak)
2. explicit functionalities (Forge, Com, Tag)
Class 1) corresponds to a set of weaknesses that we can

check on any protocol using an AEAD scheme. We build a
library of those models and a script that verifies the security
of a given protocol against those models. Class 2) only makes
sense on protocols that do rely on some explicit functionality,
like an explicit commitment. Hence, we only model them in
the relevant cases where the protocol relies on these explicit
functionalities. For our set of case studies, we want to ex-
plore their security guarantees against all our AEAD models.
To do so, we implemented a Python script that for a given
protocol, automatically executes TAMARIN for all possible
combinations of threat models, and provides a summary of
the secure or insecure scenarios.

When doing this exhaustively, it would mean running
TAMARIN 210 times for each case study of class 1) and up
to 219 times for class 2). We optimize the script by re-using
strict implications of some of our models, e.g. FullKeyColl
makes the attacker strictly more powerful than KeyColl, some
models can be restricted to not be used at the same time with

others. This reduces the possible model combinations to 29

(and up to 213 for class 2).) As this is still a huge number of
calls, we can use the same implications mentioned before to
do some dynamic pruning. The number of prunable model
combinations can vary a lot depending on the case study. The
total TAMARIN calls that our script automatically made for
our case studies can be found in Table 3. Using these impli-
cations is useful, both for dynamic pruning and to optimize
the search, but also to provide a more compact view of the
final results, only displaying non-redundant secure or inse-
cure scenarios. Our script provides us with a summary of the
security of a scheme, that can then be formatted in a table as
illustrated in Table 4.

A limiting factor in our analysis is the run-time of the
protocol models. As the problem of automatically analysing
protocol models is in general undecidable, running TAMARIN
could lead to non-termination. We deal with this possibility
by introducing timeouts into our experiments such that for
each TAMARIN call, we either find a proof, a potential attack
trace, or we have a timeout.

Using our technique, which automatically modifies the
model for each of the AEAD model combinations, can lead
to non-termination more easily, especially on fragile models
that were manually tailored toward termination. We selected
the value of the timeout depending on the run-time of the
protocol model with the classic AEAD model in use.

As an exhaustive search might not be feasible, during the
modelling process of new case studies, in Appendix A we
describe how one can correctly choose the right AEAD model
for a certain protocol model.

5 Case studies

We demonstrate our symbolic models for automated verifica-
tion on a set of eight protocols, classified into four categories
depending on the analysed security property:

• Key Secrecy - rediscovering the attack on YubiHSM [61]
• Authentication - rediscovering the attack on SFrame [49]
• Accountability - rediscovering the attacks on the ac-

countability of the Facebook Message Franking mecha-
nism [28] and finding that the Web Push [56] standard
does not provide server accountability.

• Content Agreement - analysis of multiple group messag-
ing and content delivery protocols, namely SaltPack [53],
WhatsApp Groups [59], Scuttlebutt [54], and GPG [38].

We tested our methodology on a computing cluster with
Intel® Xeon® Gold 6244 CPUs and 1TB RAM against all
possible combinations of the threat models from Section 4.
We automate this process using a Python program as de-
scribed in Section 4.3. For each TAMARIN call within our
script we limit TAMARIN to use 4 threads and set the timeout
to 60 seconds per TAMARIN call.

For the 8 case studies (plus 3 variants) we had a total eval-
uation time of 17 hours and 29 minutes with a total of 1404

11

Protocol AEAD Scheme Model Analysis Results Time (s) Novel? Status

YubiHSM [61] AES-CCM NR Key secrecy attack 2 [42] Fixed
SFrame [49] AES-GCM, EtM CTR Tag Authentication attack <1 [33] Fixed
FB Message Franking [28] AES-GCM Coll Content Agreement attack 8 [26] Fixed
FB Message Franking [28] AES-GCM Coll Framing attack 3 [26, 31] Fixed

GPG SED [38] PGP-CFB Coll No Content Agreement <1 ✓ Deprecated
GPG SEIPDv2 [38] AES-OCB Coll No Content Agreement <1 ✓ Infeasible
Saltpack [53] XSalsa20-Poly1305 Coll No Content Agreement 8 ✓ Infeasible

WebPush [56] AES-GCM Coll Server Accountability 8 ✓ Reported
WhatsApp [59] EtM CBC Coll No Content Agreement 3 ✓ Reported ‡

Scuttlebutt [54] XSalsa20-Poly1305 Coll No Content Agreement 3 ✓ Reported ∗

∗ = Feasibility depends on the collision resistance of XSalsa20-Poly1305 (not in Table 2.) See discussion in the long version [20] .
‡ = Reported to WhatsApp. Feasibility heavily relies on implementation details, which are not open source.

Table 3: Summary of the main analysis results from our case-studies, illustrating the generality of our models by rediscovering previous attacks
and finding new subtleties. In each case, we give the threat model, the used AEAD scheme, the analysis result, as well as the time it took
TAMARIN to find it. We also give some additional notes on the status of the observation.

TAMARIN calls. The overview of the results can be found
in Table 3. We show an excerpt of the detailed results in Ta-
ble 4, while all results are reproducible and can be found in
GitHub [1].

Because of space limitations, we only highlight three case
studies: The Facebook Message Franking mechanism [28],
the Web Push API [56] and the Whatsapp group messaging
encryption in Sections 5.1 to 5.3 and refer the reader to the
long version [20] for details on remaining case studies and
their detailed attack scenarios.

5.1 Facebooks Message Franking

In the setting of End-to-End encryption, reporting the abusive
behavior of users seems hard to achieve without weakening
security guarantees. In 2016, Facebook introduced Message
Franking [28] to allow reporting of offensive message attach-
ments. The idea is for a recipient of a malicious message
attachment to use a cryptographically sound way to prove that
it was sent by a specific sender.

[26] found an attack against Facebook’s message franking
mechanism in 2018. The practical attack they demonstrated
involved finding a collision on the used AEAD’s ciphertext.
As the sender in this scenario was able to choose the crypto-
graphic keys, messages, and the nonce, they showed how to
compute two keys k1 and k2, two message attachments (for
which one is the malicious one) m1 and m2, and a nonce n,
such that the encryption of m1 under n and k1 leads to the
same ciphertext as the encryption of m2 under k2 and n.

After reporting this attack to Facebook, Facebook immedi-
ately patched it. That attack demonstrates the practicality and
the impact of collision attacks on real-world schemes.

To show that such attacks can be found on the design level

by our analysis, we modeled Facebook’s Message Franking
mechanism in TAMARIN. In the initial setting, with the at-
tacker being a malicious sender, we could automatically find
the reported attack in a few seconds using the KeysColl model.

In addition to analyzing the property violated by the initial
attack – can a malicious sender avoid detection? – we also
studied the converse property – can a malicious receiver create
a fake report? The converse property got first reported as a
concern by [31].

We thus additionally model a malicious receiver that tries to
report an honest user. In this threat model, we, therefore, look
at frameability properties. Being able to frame another party
can be severe in practice, for instance, by falsely accusing
another person of having sent illegal material. After testing
our AEAD models against it, we could re-discover a potential
attack [31] on the beforementioned property. However, this
attack would require finding a collision on the ciphertext for
which one key, the nonce, and the ciphertext itself need to
be fixed. Unless further weaknesses of AEADs are found, in
this particular case over AES-GCM, this attack is, as of now,
impractical.

5.2 Web Push

The Web Push protocol provides means for a server to push
notifications to clients by depositing an encrypted notification
to the push service that will be fetched by the client when they
go online. Web Push is standardized at IETF [56], and, for
instance, Apple is planning to integrate it into its ecosystem.

Web Push aims to provide confidential push notifications
from a server to its users and to ensure certain privacy proper-
ties, like the the unlinkability of unique identifiers through the
push notification content. Given the wide array of possible

12

Protocol Threat Model Content Agreement

GPG SED Full-mColl∧Full-nColl∧Full-adColl∧Forge∧ k-NR∧m-NR∧Leak ✓
KeyColl ✗

GPG SEIPDv2 FullKeyColl∧Full-nColl∧Full-adColl∧Forge∧ k-NR∧m-NR∧Leak ✓
Full-mColl ✗

Scuttlebutt Full-adColl∧Forge∧ k-NR∧m-NR∧Leak ✓
KeysColl∨Full-mColl∨nColl ✗

Table 4: Example of how our methodology can, given a protocol and a security property, automatically establish the minimal requirements on
the AEAD guarantees for the property to hold. We achieve this by analyzing all possible AEAD models, here applied to content agreement for
GPG SED, GPG SEIPDv2, and Scuttlebutt. For each protocol analysed, we obtain the strongest combination of AEAD models under which
content agreement holds (✓), which directly yields minimal requirements on the AEAD. The weakest combinations of AEAD models under
which a potential violation of the target property (here content agreement) is found is marked with (✗).

applications and concrete use cases, we consider it interest-
ing to check whether the server is accountable or not: can a
client prove to a third party that it received a particular push
notification from a given server? In contexts where push no-
tifications trigger important actions from a user, protecting
users from malicious servers that would try to make the user
act and then be able to claim never having done so is crticial.
The importance of this guarantee would depend on the actual
deployment and usage of Web Push; we are currently in an
ongoing discussion with IETF on this point. To include this
case in our threat model, we thus consider a malicious server
controlled by the attacker and verify if it is possible to up-
load one notification that could be interpreted in two different
ways, for instance, offensively or benignly.

Our analysis reports that this guarantee does not hold w.r.t.
Full-mColl: a single notification can be decrypted validly to
two different plaintexts, depending on whether we use the cur-
rent or deprecated public key of the user. As Full-mColl is a
strong over-approximation an attack first seemed impractical.
After manual inspection of the counterexample trace given
by TAMARIN, we could see that this theoretical attack carries
over to the real world: WebPush relies on AES-GCM, and
we can then reuse similar techniques as for Facebook Mes-
sage Franking attack: concretely, an attacker can brute-force
over the salt used to produce a nonce/key pair to encrypt the
message to find a collision over the unauthenticated part of
the ciphertext, and then inject at the end of the ciphertext the
needed block to create a collision over the tag. The practical-
ity of the attack depends on the encoding of the plaintexts,
and the severity depends on whether the server being not
accountable is critical given the use case.

5.3 Content Agreement

We focus now on analyzing the design of multiple messag-
ing mechanisms. We study them in the multiple-recipient
setting, trying to answer the following question: Can a dis-
honest member of the group send a single message that will

be read differently by some recipients? This question leads us
to analyze Content Agreement in the following contexts:

• end-to-end encrypted group messaging applications, like
WhatsApp or Signal, or

• dedicated encrypted message mechanism, like GPG, Salt-
pack, or Scuttlebutt.

Our study reveals that there is a discrepancy between existing
guarantees, which we summarize in Table 5.

We only present the WhatsApp group case study next, and
refer the reader to the long version [20] for the others.

WhatsApp groups We model the design of WhatsApp’s
group messaging. Because the code of WhatsApp is not avail-
able, we constructed our model based on the available infor-
mation provided in its whitepaper [59, p. 10]. While it relies
on the Signal X3DH protocol to establish pairwise channels
between the members of the groups, sending a message is
slightly different:

• The sender generates a so called sender key (also part of
the Signal library), and sends this key to each participant
over the corresponding pairwise channel;

• To send a message, there is then a single encrypted pay-
load which is uploaded to the server.

While content agreement is trivially broken in Signal itself
because of the pairwise channels, it could intuitively be ex-
pected within the setting of group messaging. It is however
not guaranteed, as reported by our model. Our model captures
a group of three people, where one of them is the attacker.
We then aim to verify that a given message uploaded to the
server will yield the same plaintext for all group members.
Our automated analysis reports an attack on this property
when enabling ciphertext collisions under KeyColl.

The group messaging mechanism relies on an AES-CBC
encryption which is then signed with an independent key.
This is similar to the Encrypt-then-Mac with unrelated keys
scenario. It means that the complexity of mounting an attack
in practice is equivalent to the complexity of finding mean-
ingful collisions over AES-CBC. We have seen that with the

13

Protocol Content Agreement Content Agreement Noteswith CR without CR
Whatsapp ✓ ✗ Practicality depends on plaintext encodings
Scuttlebutt ✓ ✗ Practical
GPG SED (to be deprecated) ✓ ✗ Practical
GPG SEIPD v1/v2 ✓ ✓ Only theoretical attacks
SaltPack ✓ ✓ Only theoretical attacks

Signal ✗ ✗ Pairwise channels, hence no content agreement

Table 5: Content Agreement summary, with and without Collision Resistance (CR)
A summary of our findings for Content Agreement: for a set of group messaging applications and multiple recipients message
sending mechanism, we summarize whether a given message can yield to different message for multiple users. In this table, we

mention that the Signal application does not meet consistency as a side-remark: as Signal uses pairwise channels to send
messages in groups, a different message can be sent to each member of the group.

current capabilities, this strongly depends on the concrete
encoding of plaintexts, and whether we can find so-called
polyglot plaintexts [3]. As WhatsApp is closed source, veri-
fying the practicality of the attack would require to reverse
engineer the full message encoding, which we consider out of
scope for this paper. However, given the variety of possible
message contents (notification, GIFs, media, React, . . .) it is
likely that the encoding would be loose enough to carry out
the attack.

5.4 Disclosure

Using our methodology, we detected several undesirable be-
haviors in the protocol design of Scuttlebutt, Web Push, and
WhatsApp Groups [54, 56, 59]. While the behaviors are possi-
ble on the protocol design level, their implementation-level
feasibility depends on low-level encoding choices.

The behaviors we found did not violate the main specified
goals of the respective protocols, and hence we did not mark
them as “attacks”. Nevertheless, we contacted the developers
of the affected protocols and explained our observations, such
that they can assess their implementation-level feasibility,
with distinct feedback:

• The developers of the WebPush standard acknowledged
the issue, and a discussion is ongoing to determine how
to best document these possible behaviors in the stan-
dard;

• WhatsApp considered this outside their threat model,
and noted that using a different AEAD would still allow
a variant of the behavior with the same effect; and

• The Scuttlebutt developers did not respond.

6 Limitations

In an ideal world, we would like to (a) cover all possible
AEAD definitions and weaknesses, and (b) have the guaran-
tee that if our method reports an attack, the attack is always

feasible in practice. Unfortunately this is not the case yet.
In terms of possible AEAD definitions and their differ-

ences, there are subtle differences that we currently do not
capture yet. This includes, for example, properties beyond
collisions and nonce-reuse, such as the “s-way commiting
security property” [9] that generalizes the CMT notions to
the multi-user setting. Our models can also be improved with
respect to the Forge capability, as discussed in Section 4. On
the positive side, we define general models and capture for
instance collisions that given the current knowledge are not
practical, but could become so in the future, e.g., with new
developments on AES. While we do not claim to cover all
possible AEAD attacks in the future, this allows to future
proof protocols.

With respect to practical feasibility of attacks, the funda-
mental problem is that our analysis method and standard cryp-
tographic analyses in fact consider protocols designs and not
their implementation details. For example, this includes ab-
stracting away from encoding details, i.e., how values and
compound structures are exactly mapped to bitstrings. Yet
such details are critical to determine whether certain collision
attacks are possible or not. As a consequence, when we find
an attack on the protocol design, this should intuitively be
interpreted as: there exists an encoding scheme for which the
protocol implementation is insecure. We argue that security
of a protocol design should avoid depending on its encoding
scheme, and if not, specify the requirements explicitly. The
problems we found here using our framework are therefore
real concerns for the protocol designs. Still, manual inspec-
tion of the implementation is still needed to check whether
the encodings allow for generation of the required collisions;
but our analysis indicates the types of collisions needed.

7 Further Related Work

We provided background and summary of the related works on
AEADs in the first two sections. Here we discuss additional

14

works in formal analysis of security protocols.

Improving the symbolic models of primitives to enable
automated attack finding has recently been explored for sev-
eral types of basic primitives, like cryptographic hashes [19],
Diffie-Hellman groups [22], or digital signatures [36]. Our
work is centered on AEAD, for which no systematic approach
had been attempted yet.

Ad-hoc approaches include a specific form of nonce-reuse
in the Tamarin analysis of WPA [23] and the analysis of
Yubikey [42]. In a different approach, [40] modeled the fine-
grained block based encryption in the tool ProVerif, but this
approach did not scale to protocols of the complexity consid-
ered here. Overall, our work is the first to systematically ex-
plore weaknesses of concrete algorithms or formal definitions
for AEADs and provide models amenable to automation.

ProVerif [14] is, besides Tamarin, the other major tool for
automated analysis of protocols in the symbolic model. While
we developed our models and case-studies in Tamarin, they
could also be used in the ProVerif framework.

As we are focused on automated attack finding due to real
life weaknesses of AEADs, our work is orthogonal to tools
from the computational model [6, 7, 13] that are all focused
on proving security, and cannot find attacks. Our automated
models can be useful to establish the assumptions on the
AEAD before attempting a computational proof.

With respect to our case studies, based on the absence of
collision resistance of AEADs, also referred to as robust-
ness or key-commitment, [26] already reported an attack on
the Facebook abuse reporting mechanism, which violates ac-
countability. We are the first to report on behaviors in which is
content agreement is not satisfied due to AEAD weaknesses.
Other undesirable behaviors have arisen due to collisions,
which are linked to oracle partitioning attacks [43], where an
attacker can obtain a better than brute force advantage against
the OPAQUE protocol. While we can model the relevant
AEAD weakness in our framework, modeling the violated
security property in the symbolic model is left to future work.

8 Conclusions

We developed the first methodology to analyse the impact of
detailed AEAD behaviors on the protocols that use them. Our
methodology thus enables detecting protocol weaknesses for
a given AEAD, or conversely, determining a protocol’s AEAD
requirements. The case studies indicate that our methodol-
ogy is effective and efficient in finding potential weaknesses,
notably automatically finding attacks that previously could
only found by manual inspection, thus bringing a new class
of attacks within the realm of automated detection.

Acknowledgments

This work received funding from the France 2030 program
managed by the French National Research Agency under
grant agreement No. ANR-22-PECY-0006.

References

[1] Tamarin models and analysis scripts to reproduce the
results in this paper, 2023. https://github.com/Aut
omatedAnalysisOf/AEADProtocols.

[2] Michel Abdalla, Mihir Bellare, and Gregory Neven. Ro-
bust Encryption. Cryptology ePrint Archive, Report
2008/440, 2008. https://ia.cr/2008/440.

[3] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl,
Atul Luykx, and Sophie Schmieg. How to Abuse and Fix
Authenticated Encryption Without Key Commitment. In
31st USENIX Security Symposium, 2020.

[4] Martin R Albrecht, Jean Paul Degabriele, Torben Brandt
Hansen, and Kenneth G Paterson. A surfeit of SSH
cipher suites. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1480–1491, 2016.

[5] Martin R Albrecht, Kenneth G Paterson, and Gaven J
Watson. Plaintext recovery attacks against SSH. In 30th
IEEE Symposium on Security and Privacy, pages 16–26,
2009.

[6] David Baelde, Stéphanie Delaune, Charlie Jacomme,
Adrien Koutsos, and Solène Moreau. An interactive
prover for protocol verification in the computational
model. In 2021 IEEE Symposium on Security and Pri-
vacy (SP), pages 537–554. IEEE, 2021.

[7] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella Béguelin. Computer-aided security
proofs for the working cryptographer. In Annual Cryp-
tology Conference, pages 71–90. Springer, 2011.

[8] Guy Barwell, Daniel Page, and Martijn Stam. Rogue
Decryption Failures: Reconciling AE Robustness No-
tions. In Proceedings of the 15th IMA International
Conference on Cryptography and Coding, page 94–111,
2015.

[9] Mihir Bellare and Viet Tung Hoang. Efficient Schemes
for Committing Authenticated Encryption. Cryptology
ePrint Archive, Report 2022/268, 2022. https://ia.c
r/2022/268.

[10] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces
are Noticed: AEAD Revisited. Cryptology ePrint
Archive, Report 2019/624, 2019. https://ia.cr/
2019/624.

15

https://github.com/AutomatedAnalysisOf/AEADProtocols
https://github.com/AutomatedAnalysisOf/AEADProtocols
https://ia.cr/2008/440
https://ia.cr/2022/268
https://ia.cr/2022/268
https://ia.cr/2019/624
https://ia.cr/2019/624

[11] Mihir Bellare, Phillip Rogaway, and David Wagner. The
EAX mode of operation. In International Workshop on
Fast Software Encryption, pages 389–407, 2004.

[12] Ritam Bhaumik and Mridul Nandi. Improved security
for OCB3. In International Conference on the Theory
and Application of Cryptology and Information Security,
pages 638–666, 2017.

[13] Bruno Blanchet. CryptoVerif: Computationally sound
mechanized prover for cryptographic protocols. In
Dagstuhl seminar “Formal Protocol Verification Ap-
plied, volume 117, page 156, 2007.

[14] Bruno Blanchet, Vincent Cheval, and Véronique Cortier.
Proverif with lemmas, induction, fast subsumption, and
much more. In 42nd IEEE Symposium on Security and
Privacy (S&P’22), 2022.

[15] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. ProVerif 2.00: automatic cryptographic pro-
tocol verifier, user manual and tutorial, 2018.

[16] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G
Paterson, and Martijn Stam. Security of symmetric en-
cryption in the presence of ciphertext fragmentation. In
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 682–699,
2012.

[17] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Mar-
tin Vuagnoux. Password interception in a SSL/TLS
channel. In Annual International Cryptology Confer-
ence, pages 583–599, 2003.

[18] John Chan and Phillip Rogaway. Anonymous AE.
Cryptology ePrint Archive, Report 2019/1033, 2019.
https://ia.cr/2019/1033.

[19] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca
Hirschi, Charlie Jacomme, and Steve Kremer. Hash
Gone Bad: Automated discovery of protocol attacks that
exploit hash function weaknesses. In USENIX 2023,
2023.

[20] Cas Cremers, Alexander Dax, Charlie Jacomme, and
Mang Zhao. Automated Analysis of Protocols that use
Authenticated Encryption: Analysing the Impact of the
Subtle Differences between AEADs on Protocol Secu-
rity. In USENIX Security 2023, Anaheim, United States,
August 2023. USENIX.
https://inria.hal.science/hal-04126116.

[21] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1773–1788, 2017.

[22] Cas Cremers and Dennis Jackson. Prime, Order Please!
Revisiting Small Subgroup and Invalid Curve Attacks
on Protocols using Diffie-Hellman. In 32nd IEEE Com-
puter Security Foundations Symposium, pages 78–93,
2019.

[23] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
Formal Analysis of IEEE 802.11’s WPA2: Countering
the Kracks Caused by Cracking the Counters. In 29th
USENIX Security Symposium, pages 1–17, 2020.

[24] Alexander Dax, Robert Künnemann, Sven Tangermann,
and Michael Backes. How to wrap it up-a formally veri-
fied proposal for the use of authenticated wrapping in
PKCS# 11. In IEEE 32nd Computer Security Founda-
tions Symposium (CSF), pages 62–6215, 2019.

[25] Jean Paul Degabriele and Kenneth G Paterson. On the
(in) security of IPsec in MAC-then-encrypt configura-
tions. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 493–504,
2010.

[26] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and
Joanne Woodage. Fast Message Franking: From Invis-
ible Salamanders to Encryptment. Cryptology ePrint
Archive, Report 2019/016, 2019. https://ia.cr/20
19/016.

[27] Santiago Escobar, Catherine Meadows, and José
Meseguer. Maude-NPA: Cryptographic protocol anal-
ysis modulo equational properties. In Foundations of
Security Analysis and Design, pages 1–50. Springer,
2009.

[28] Facebook - Messenger Secret Conversations Technical
Whitepaper. https://about.fb.com/wp-content/u
ploads/2016/07/messenger-secret-conversat
ions-technical-whitepaper.pdf, 2017. accessed:
2022-08-08.

[29] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Se-
curity of Symmetric Primitives under Incorrect Usage
of Keys. Cryptology ePrint Archive, Report 2017/288,
2017. https://ia.cr/2017/288.

[30] Pierre-Alain Fouque, Gwenaëlle Martinet, Frédéric
Valette, and Sébastien Zimmer. On the Security of the
CCM Encryption Mode and of a Slight Variant. In In-
ternational Conference on Applied Cryptography and
Network Security, pages 411–428, 2008.

[31] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage Franking via Committing Authenticated Encryp-
tion. Cryptology ePrint Archive, Report 2017/664, 2017.
https://ia.cr/2017/664.

16

https://ia.cr/2019/1033
https://inria.hal.science/hal-04126116
https://ia.cr/2019/016
https://ia.cr/2019/016
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://ia.cr/2017/288
https://ia.cr/2017/664

[32] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce
misuse-resistant authenticated encryption at under one
cycle per byte. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 109–119, 2015.

[33] Takanori Isobe, Ryoma Ito, and Kazuhiko Minematsu.
Security Analysis of SFrame. In European Sympo-
sium on Research in Computer Security, pages 127–146,
2021.

[34] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu.
Breaking and repairing GCM security proofs. In Annual
Cryptology Conference, pages 31–49, 2012.

[35] Tetsu Iwata and Yannick Seurin. Reconsidering the
Security Bound of AES-GCM-SIV. IACR Transactions
on Symmetric Cryptology, pages 240–267, 2017.

[36] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon,
and Ralf Sasse. Seems Legit: Automated Analysis of
Subtle Attacks on Protocols that Use Signatures. In Pro-
ceedings of the ACM SIGSAC Conference on Computer
and Communications Security, pages 2165–2180, 2019.

[37] Jakob Jonsson. On the security of CTR+ CBC-MAC.
In International Workshop on Selected Areas in Cryp-
tography, pages 76–93, 2002.

[38] Werner Koch, Paul Wouters, Daniel Huigens, and Jus-
tus Winter. OpenPGP Message Format. Internet-Draft
draft-ietf-openpgp-crypto-refresh-06, Internet Engineer-
ing Task Force, June 2022. Work in Progress.

[39] Steve Kremer and Robert Künnemann. Automated anal-
ysis of security protocols with global state. Journal of
Computer Security, 24(5):583–616, 2016.

[40] Steve Kremer and Mark D. Ryan. Analysing the Vulner-
ability of Protocols to Produce Known-pair and Chosen-
text Attacks. In Riccardo Focardi and Gianluigi Za-
vattaro, editors, Proceedings of the 2nd International
Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), volume 128 of Elec-
tronic Notes in Theoretical Computer Science, pages
84–107, London, UK, May 2005. Elsevier Science Pub-
lishers.

[41] Ted Krovetz and Phillip Rogaway. The software per-
formance of authenticated-encryption modes. In Inter-
national Workshop on Fast Software Encryption, pages
306–327, 2011.

[42] Robert Künnemann and Graham Steel. YubiSecure?
Formal security analysis results for the Yubikey and
YubiHSM. In International Workshop on Security and
Trust Management, pages 257–272. Springer, 2012.

[43] Julia Len, Paul Grubbs, and Thomas Ristenpart. Parti-
tioning Oracle Attacks. In 30th USENIX Security Sym-
posium, 2021.

[44] David A McGrew and John Viega. The security and
performance of the Galois/Counter Mode (GCM) of
operation. In International Conference on Cryptology
in India, pages 343–355, 2004.

[45] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN prover for the symbolic
analysis of security protocols. In International confer-
ence on computer aided verification, pages 696–701,
2013.

[46] Kazuhiko Minematsu, Stefan Lucks, and Tetsu Iwata.
Improved authenticity bound of EAX, and refinements.
In International Conference on Provable Security, pages
184–201, 2013.

[47] Serge Mister and Robert Zuccherato. An attack on CFB
mode encryption as used by OpenPGP. In International
Workshop on Selected Areas in Cryptography, pages
82–94, 2005.

[48] Karl Norrman, Vaishnavi Sundararajan, and Alessandro
Bruni. Formal Analysis of EDHOC Key Establishment
for Constrained IoT Devices. CoRR, abs/2007.11427,
2020.

[49] E. Omara, J. Uberti, A. GOUAILLARD, and S. Murillo.
Secure Frame (SFrame) v01. https://datatracke
r.ietf.org/doc/html/draft-omara-sframe-01,
2020. accessed: 2022-08-08.

[50] Gordon Procter. A Security Analysis of the Composi-
tion of ChaCha20 and Poly1305. In Cryptology ePrint
Archive, Paper 2014/613, 2014. https://eprint.iac
r.org/2014/613.

[51] Phillip Rogaway. Authenticated-Encryption with
Associated-Data. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, CCS
’02, page 98–107, 2002.

[52] Phillip Rogaway and John Steinberger. Secu-
rity/Efficiency Tradeoffs for Permutation-Based Hash-
ing. In EUROCRYPT 2008, pages 220–236, 2008.

[53] Saltpack v2. https://saltpack.org/encryptio
n-format-v2, 2017. accessed: 2022-08-08.

[54] Scuttlebot Private Box v0.3.1. https://scuttleb
ot.io/more/protocols/private-box.html, 2019.
accessed: 2022-08-08.

[55] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust
Dies in Darkness: Shedding Light on Samsung’s Trust-
Zone Keymaster Design. In Cryptology ePrint Archive,

17

https://datatracker.ietf.org/doc/html/draft-omara-sframe-01
https://datatracker.ietf.org/doc/html/draft-omara-sframe-01
https://eprint.iacr.org/2014/613
https://eprint.iacr.org/2014/613
https://saltpack.org/encryption-format-v2
https://saltpack.org/encryption-format-v2
https://scuttlebot.io/more/protocols/private-box.html
https://scuttlebot.io/more/protocols/private-box.html

Paper 2022/208, 2022. https://eprint.iacr.org/
2022/208.

[56] Martin Thomson. Message Encryption for Web Push.
RFC 8291, November 2017.

[57] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1313–1328, 2017.

[58] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 534–545, 2002.

[59] WhatsApp Security Whitepaper. https://www.what
sapp.com/security/WhatsApp-Security-White
paper.pdf, 2021. accessed: 2022-08-08.

[60] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave Jing Tian,
and Antonio Bianchi. Formal Model-Driven Discovery
of Bluetooth Protocol Design Vulnerabilities. In IEEE
Symposium on Security and Privacy (SP), pages 2285–
2303, 2022.

[61] YubiHSM. https://www.yubico.com/resource/hs
m-security-for-manufacturing/, 2021. accessed:
2022-08-08.

[62] Zerologon – hacking Windows servers with a bunch
of zeros . https://nakedsecurity.sophos.com
/2020/09/17/zerologon-hacking-windows-ser
vers-with-a-bunch-of-zeros/, 2020. accessed:
2023-02-01.

A Choosing the correct AEAD model

Whereas using the fully automated methodology from the
previous section covers all AEAD models, it can be out-of-
scope for complex and detailed protocol models. As complex
protocol models often need manual work to aid automation, it
might be more feasible to a priori choose the correct AEAD
model for the instantiations actually used in the protocol. We
demonstrate a way to choose the right combinations of AEAD
models on the example of a toy protocol using AES-GCM.
Assume that the protocol explicitly adds the functionality that
compares the tag instead of using authenticated decryption of
the ciphertext:

• As a first step check whether your protocol specification
forbids sending the nonce used for AES-GCM. If no,
add Leak to you AEAD model combination.

• Check Table 1 and see if the the AEAD is resistant to
nonce-reuse attacks. For AES-GCM we see that an XOR
of plaintexts can be leaked and there is the possibility to
forge ciphertexts. Here, add k-NR to the AEAD models.

As this is an over-approximation of the before-mentioned
weakness, you can also decide to instead of leaking the
encryption key, to leak the XOR of plaintext (if your tool
of choice allows modeling of XOR) or to output a forged
ciphertext under the given key.

• When checking Table 1 again, AES-GCM is not colli-
sion resistant. Then we check Table 2 and see that AES-
GCM is also vulnerable to collisions of type KeysColl
(,KeyColl), and nColl. As KeyColl is strictly stronger than
KeysColl, we only need to add KeyColl and nColl to the
set of combinations. However, if we would like to fu-
ture proof the protocol (and we know that AES-GCM
is not collision-resistant) we could also decide to add
the strongest collision models, e.g. FullKeyColl, instead.
With this, we could see if the protocol relies on collision
resistant AEADs.

• As the described protocol explicitly uses AES-GCM tags
we would also add the Tag models. As collisions on tags
are as hard or even easier than finding collisions on the
AEAD scheme itself, we would recommend to use at
least the same kind of collision types for tags as well, for
instance FullKeyTag.

18

https://eprint.iacr.org/2022/208
https://eprint.iacr.org/2022/208
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.yubico.com/resource/hsm-security-for-manufacturing/
https://www.yubico.com/resource/hsm-security-for-manufacturing/
https://nakedsecurity.sophos.com/2020/09/17/zerologon-hacking-windows-servers-with-a-bunch-of-zeros/
https://nakedsecurity.sophos.com/2020/09/17/zerologon-hacking-windows-servers-with-a-bunch-of-zeros/
https://nakedsecurity.sophos.com/2020/09/17/zerologon-hacking-windows-servers-with-a-bunch-of-zeros/

	Introduction
	Background on AEADs and protocol attacks
	Formal AEAD syntax and requirements
	Historical real-world protocol attacks exploiting AEADs
	Theoretical AEAD frameworks

	Generalizing real-world AEAD (in)security for systematic analysis
	Core properties
	Generalizing AEAD collision resistance and relations
	Collision attacks on deployed AEADs

	Symbolic models for automated verification
	The symbolic model of cryptography
	Symbolic AEAD models
	Automated analysis methodology

	Case studies
	Facebooks Message Franking
	Web Push
	Content Agreement
	Disclosure

	Limitations
	Further Related Work
	Conclusions
	Choosing the correct AEAD model

