
A Logic and an Interactive Prover for the
Computational Post-Quantum Security of Protocols

Cas Cremers∗, Caroline Fontaine†, Charlie Jacomme∗
∗CISPA Helmholtz Center for Information Security, Germany

† Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Abstract—We provide the first mechanized post-quantum sound
security protocol proofs. We achieve this by developing PQ-BC,
a computational first-order logic that is sound with respect to
quantum attackers, and the corresponding mechanization support
in the form of the PQ-SQUIRREL prover.

Our work builds on the classical BC logic [7] and its
mechanization in the SQUIRREL [5] prover. Our development
of PQ-BC requires making the BC logic sound for a single
interactive quantum attacker. We implement the PQ-SQUIRREL
prover by modifying SQUIRREL, relying on the soundness results
of PQ-BC and enforcing a set of syntactic conditions; additionally,
we provide new tactics for the logic that extend the tool’s scope.

Using PQ-SQUIRREL, we perform several case studies, thereby
giving the first mechanical proofs of their computational post-
quantum security. These include two generic constructions of
KEM based key exchange, two sub-protocols from IKEv1 and
IKEv2, and a proposed post-quantum variant of Signal’s X3DH
protocol. Additionally, we use PQ-SQUIRREL to prove that several
classical SQUIRREL case studies are already post-quantum sound.

Index Terms—Security Protocols, Post Quantum, Formal
Methods, Observational Equivalence, Computational Security,
Interactive Prover.

I. INTRODUCTION

In recent years, multiple highly-successful tools have been
developed to analyze and verify cryptographic protocols and
primitives [9], [15], [16], [48], [57]. They have proven the
usefulness and necessity of computer-aided cryptography, both
uncovering critical attacks against widely deployed protocols
and helping in the design of new standards [3], [10], [13], [22],
[25]–[27], [29], [30], [43], [44], [47].

In anticipation of developments in quantum computing that
would break a lot of widely-used cryptographic primitives,
the security community has started to develop many new
security primitives and protocols, and revisit old protocols.
Additionally, an extensive multi-year NIST standardization
process is ongoing to develop new primitives and protocols.
These efforts aim to establish mechanisms that are provably
secure against quantum attackers. At some level of abstraction,
this implies (i) designing new primitives and prove (or assume)
that they are secure against a quantum attacker, and (ii) proving
that a concrete protocol that uses such primitives is indeed
secure against a quantum attacker. In this work, we focus on
the latter, and in particular how we can mechanize such proofs.

A classical strategy for proving a protocol’s security is a
so-called reduction proof, which yields computational security
guarantees against a polynomial-time attacker. This approach
is used in most pen-and-paper proofs by cryptographers, and

involves constructing a reduction from any attack on the
protocol to an attack on the used cryptographic assumptions,
and then reasoning by contradiction. This is a well studied
approach with respect to classical (non-quantum) attackers:
different flavors of such proofs can be mechanized by tools
such as CRYPTOVERIF [15] and EASYCRYPT [9]. However,
some proof steps commonly used in reductions that are valid
for a classical attacker, such as rewinding, are in general not
valid anymore for quantum attackers. This result is similar to
the no-cloning theorem [61], which implies that one must be
careful when talking about the state of a quantum attacker. As
a consequence, a classical reduction proof of a protocol (even
based on post-quantum sound primitives) may not be valid
for quantum attackers. Unfortunately, there exists no formal
framework nor mechanization dedicated to computational
proofs of a protocol’s security versus a quantum attacker.

In this work, we address this problem by developing
PQ-BC, a post-quantum sound variant of a computationally
sound protocol logic, and a corresponding tool called the
PQ-SQUIRREL prover, by extending the logic’s tool support
for the post-quantum setting, as well as adding tactics. We
use our new tool to provide the first mechanized post-quantum
computational security proofs for several protocols.

Concretely, our work builds on the BC logic [7] and its
mechanization in the SQUIRREL prover [5]. The BC logic can
be used to construct security proofs that provide computational
guarantees against a classical (non-quantum) attacker, while
only working inside a logical framework in which many
intricate details have been abstracted. It has notably been used
for manual proofs of real-world protocols, see e.g., proofs of
RFID based protocols [24], AKA [45], e-voting protocols [6],
key-wrapping API [53], and SSH through a composition
framework [23]. Reasoning in BC was recently mechanized
and extended in the SQUIRREL prover [5], dedicated to the
formal proofs of protocols. Notably, reasoning in BC (and
therefore SQUIRREL) is not sound with respect to a quantum
attacker, because the framework allows reduction steps that
cannot be reproduced with a quantum attacker.

To develop PQ-BC, we have to make the BC logic sound for
a single interactive quantum attacker, while it previously relied
on a set of deterministic one-shot attackers. This seemingly
small change triggers a cascade of technical changes. We
design a new term interpretation for the logic and identify
three syntactic conditions for proofs that help ensure their post-
quantum soundness. We provide mechanization for PQ-BC



in the form of the PQ-SQUIRREL prover. PQ-SQUIRREL’s
soundness relies on the soundness results of PQ-BC and
implements the syntactic conditions; additionally, we design
and implement new tactics that extend the tool’s scope.
Contributions. We see our main contributions as the following:

• First, we develop PQ-BC, the first computational first-
order logic to prove guarantees of security protocols whose
results are provably sound with respect to a quantum
attacker.

• Second, we develop the PQ-SQUIRREL prover, a mecha-
nized tool support for establishing such guarantees.

• Third, we use our tool to provide the first mecha-
nized proofs of the post-quantum computational security
of 11 security protocols as case studies. These include
two KEM-based key exchanges [18], [35], a post-quantum
variant of Signal’s X3DH [38], and two protocols from
the IKE standards [20], [41] – confirming claims in [34].
Overview: We provide in Section II the necessary back-

ground on the BC logic and the SQUIRREL prover. Then,
in Section III, we give a high-level overview of the design of
the PQ-BC logic and how it differs from the BC logic. In Sec-
tion IV we formally define PQ-BC, its syntax and semantics,
and its rules; in Section V we describe PQ-SQUIRREL and
perform case studies. We discuss current limitations and future
work in Section VI, and conclude in Section VII.

Upon first reading, the reader may get a high-level under-
standing of the paper by skipping Section IV and directly
continuing with Section V.

We provide all source code, protocol models, and the long
version of this paper with full details, at [1].

Additional related Work: Issues regarding the validity of
classical cryptographic reductions in the post-quantum setting
have mostly started with [60], which identified the “no-cloning
theorem” [61] as a key issue, followed, e.g., by [4].

Key details and difficulties when moving to post-quantum
security are generally discussed [36], [56]. They provide some
guidelines that are suitable for game-based approaches and
gave us many insights, but those guidelines are not suited for
the BC logic approach.

There exists many tools for security proofs, we only discuss
the most widely used. At one extreme of the spectrum are
tools like EASYCRYPT [9] and CRYPTOVERIF [15], which
provide strong computational guarantees for detailed models
of cryptographic primitives, but for whom scaling to larger
constructs is more challenging; at the other end of the spectrum,
we have tools like TAMARIN [48] and PROVERIF [16], which
can analyze much larger protocol mechanisms by using a more
abstract symbolic model, but cannot provide computational
guarantees. SQUIRREL, and thus PQ-SQUIRREL, lies in the
middle ground between those two ends: on one side, it provides
computational guarantees, that are thus stronger than the one
given by PROVERIF and TAMARIN; on the other side, it
operates at a higher level of abstraction than EASYCRYPT and
CRYPTOVERIF. Consequently, SQUIRREL is less expressive and
thus less suited to reason about cryptographic primitives, but

tends to scale better to larger construct. However, SQUIRREL
does not provide any concrete security bounds, and in security
proofs over unbounded protocols, the number of sessions is
arbitrary and not attacker chosen. For a detailed comparison
between SQUIRREL, EASYCRYPT and CRYPTOVERIF, we refer
the reader to [5, Appendix E].

CRYPTOVERIF does not have any support for quantum
attackers yet, it might be possible to make it quantum-sound
by using ideas from our work, such as forbidding some
manipulations over the attacker state, and ensuring that a unique
quantum attacker process can continue without having to alter
or inspect its internal state.

The previously mentioned EASYCRYPT is a toolset for
constructing cryptographic proofs, which currently mainly
targets cryptographic primitives. It was first adapted to the
quantum setting with qRHL [59], a formal security prover based
on a quantum relational Hoare logic, and later (in concurrent
work to ours) to the post-quantum setting with EASYPQC [8].
The qRHL approach works on quantum constructions, which
substantially complicates proving classical constructions. For
example, there is no equivalent to the classical implication
operation over quantum predicates (see e.g., [28]). EASYPQC
avoids this overhead by only considering classical constructions.

Similar to our approach, EASYPQC adds new side conditions
to its core logic, such as forbidding case distinctions on the
attacker’s internal state. It is difficult to compare their side
conditions to ours, since the conditions are deeply linked to the
underlying logics, which are of a very different nature. Notably,
EASYPQC supports reasoning in the Qantum Random Oracle
Model (QROM). The BC logic does not yet support the ROM
(nor QROM), and hence neither do we. This is not an inherent
restriction of the logic and could be future work. For our
current case studies, we prefer the use of the PRF assumption
over the QROM.

EASYPQC and our approach inherit their focus from their
starting points: the EASYCRYPT approach is more geared
towards cryptographic primitives, while BC is designed for
protocols. All current EASYPQC case studies are cryptographic
primitives, whereas our case studies are protocols. In particular,
our case studies for KEM based key exchanges are the first
mechanized proofs with computational guarantees of such
protocols.

II. BACKGROUND: THE CLASSICAL BC LOGIC AND
SQUIRREL

Below we first recall the main elements of the original BC
logic [7] that are relevant for understanding our work in the
following sections. In Section II-E we describe the SQUIRREL
prover [5], which mechanizes reasoning in the BC logic.

In the computational model, the security of a protocol is
established by showing that the protocol cannot be distinguished
from its idealized version by any polynomial-time attacker w.r.t.
a security parameter. Such security proofs of protocols rely
on two ingredients: a computational hardness assumption, and
a security reduction showing that an attacker that can break
the security of the protocol can break the hardness assumption.

2



But the construction of security reductions is difficult and
error-prone. To ease this process, the BC logic proves the
security of protocols inside a first-order logic. This approach
requires that within BC, everything is modeled using only terms,
i.e., purely syntactic constructs. This is very different from
the game-based modeling, where protocols are expressed as
abstract programs with procedure calls, states, and side effects.
With terms, all protocol actions become pure functional calls,
which tends to ease the formal reasoning. This leads to some
core elements in the design of the logic: one needs to

1) define terms, as well as an interpretation from protocols
to terms so that the terms syntactically describe all the
behaviours of the protocol,

2) define logical predicates and rules (which include axioms)
to reason about our terms, and

3) show that the rules are sound, i.e., that the rule applications
correspond to correct reductions.

We provide an overview of the first two elements in the
following, and refer the reader to [7] for details of the rules and
their soundness. However, all three elements will be discussed
when we present the modified post-quantum sound logic in
the following sections.

A. Specifying protocol behaviours using syntactic terms

1) From protocols to terms: Let us consider a very simple
example protocol process P , using an informal syntax.

Example 1 (Protocol).

P := new sk.in(x).new r.out(enc(x, r, sk)).
in(y).new r′.out(enc(y, r′, sk)).

Process P samples a secret key sk, and uses it to encrypt some
attacker input x using the random seed r (explicitly modeling
probabilistic encryption). It then encrypts a second input y
with random seed r′.

Equivalently, in the game-based notation with a stateful prob-
abilistic attacker A and security parameter η, the experiment
that returns the attacker-observable values is defined as:

Experiment ExpP
enc,A(η)

sk
$←− {0, 1}η

x
$←− A(1η)

r
$←− {0, 1}η

y
$←− A(1η,enc(x, r, sk))

r′
$←− {0, 1}η

return (enc(x, r, sk),enc(y, r′, sk))

To syntactically represent such observable sequences of
values using terms, one can use the following constructions:

• fresh values n sampled from an infinite set N , representing
randomly sampled bitstrings, such as r, r′, and sk above;

• public function symbols f ∈ Σ, to model e.g., encryption
functions such as enc; and

• variables such as x and y from the set of variables X ,
modeling attacker inputs.

Any protocol computation can then be modeled as applications
of public functions to either fresh values modeling randomly
generated values (such as nonces and secret keys), or variables
modeling attacker inputs. This is essentially the Dolev-Yao
model [31], where the protocol can be described with the
following term sequence:

enc(x, r, sk), enc(y, r′, sk) (1)

This sequence of terms, that we will refer to as the frame of
the protocol, represents the possible messages that an attacker
can observe during the protocol’s execution.

2) Modeling attacker computations: The sequence of terms
in Eq. (1) is not yet sufficient to reason syntactically about
protocols, because it does not capture that y probabilistically
depends on the value of enc(x, r, sk). From a high-level
point of view the logic must satisfy locality: a term must
explicitly contain all its probabilistic dependencies. Essentially,
it needs to syntactically capture that y is the result of
an attacker’s unknown computation, which depends on the
previous messages, e.g., in our example, y depends on r and sk.
The BC logic uses free function symbols atti that represent
unknown pieces of code, i.e., attacker computations that receive
as arguments the previous messages seen by the attacker.

The previous frame can now be expressed as:

enc(att0(), r, sk), enc(att1(enc(att0(), r, sk)), r
′, sk) (2)

att0() representing the first message (x) computed by the
attacker, when it does not have access to any information from
the protocol, and att1(enc(att0(), r, sk)) being its second
message (y), which is a function of the protocol’s first output.

The term-based notation is more akin to a functional view:
one cannot use variables such as x to refer to previously com-
puted values. For this reason, att0() occurs twice in Eq. (2).
However, attacker computations such as att0 are probabilistic
algorithms, and hence two different invocations might yield
different results. This is not the intended interpretation, and it
therefore introduces a new requirement on terms: stability -
two occurrences of the same term must evaluate to the same
value. When one evaluates the value of the previous frame,
this implies that the two occurrences of att0() evaluate to
the same value. This requirement captures that within a single
protocol execution, identical terms refer to the same value and
not to separate (probabilistic) attacker calls.

3) Reasoning about terms: The BC logic contains in its syn-
tax a binary predicate ∼. This predicate expects two sequences
of terms and intuitively represents their indistinguishability.
Note that ∼ has low operator precedence, but we often add
parentheses for readability.

Example 2 (BC indistinguishability formula).(
n′, if att0(n

′)
.
= n then ko else ok

)
∼

(
n′, ok

)
(3)

The protocol modeled on the left-hand side produces a
fresh value n′, sends it, and then waits to receive another
value (represented by att0(n

′)). If the received value is the
same as a freshly generated value n, the protocol outputs

3



ko, otherwise ok. The formula expresses that the attacker
cannot distinguish this protocol from the protocol that sends
a fresh value n′, waits for an input, and then outputs ok.
Note that the if _ then _ else _ notation is syntactic sugar
for a ternary function symbol ite(_, _, _), with which one
models conditionals in BC. To give a flavor of how proofs are
performed in the BC logic, we provide some rule examples
and prove that Eq. (3) holds in the logic.

Example 3 (Rules and proofs).
=IND

(t
.
= n) ∼ false

when n does not occur in t

IF-F
ϕ ∼ false (u, v) ∼ w

(u, if ϕ then s else v) ∼ w

REFL

u ∼ u

Logical rules are read bottom-up, where to prove the formula
on the bottom, one can prove the formulas on the top. Rule
=IND means that a term t that does not syntactically contain a
fresh value n cannot be equal to it, and IF-F tells us that if a
conditional is always false, we can only consider its negative
branch. The REFL rule encodes that ∼ is reflexive.

With those rules, we can prove the simple property in Eq. (3):(
att0(n

′)
.
= n

)
∼ false

=IND
(n′, ok) ∼ (n′, ok)

REFL(
n′, if att0(n

′)
.
= n then ko else ok

)
∼ (n′, ok)

IF-F

B. A faithful computational interpretation

We previously described the BC way to syntactically describe
the behaviour of a protocol interacting with an attacker. To
ultimately get to a logic that provides computational guarantees,
those syntactic terms must capture all the behaviours of the
protocol. To do so, BC provides a formal way to interpret
those terms, so that their possible evaluations match those of
the real protocol. Intuitively, given an attacker against the real
world protocol, and given the syntactic frame (e.g., Eq. (2)),
it should be possible to build a simulator producing the same
results as the protocol. If this is possible, then the frame does
indeed capture all the possible behaviours of the protocol, and
we can thus use it to reason about its security.

1) Interpreting terms: We now describe how BC interprets
a term, i.e., computes the probabilistic result of a term, while
satisfying both locality and stability. The interpretation has three
parameters: the security parameter η and two infinite random
bitstrings ρs and ρr. The interpretation extracts the randomness
used in probabilistic protocol functions from ρs, and the
attacker randomness from ρr. By universally quantifying over
those parameters and the attacker computations, it captures all
the possible executions of a protocol.

The interpretation depends on a set of Polynomial Time
Turing Machines (PTTM) that compute the evaluation function
T of a term, i.e.,

• a machine Tn for n: outputs the value of a given fresh
value, depending on η and ρs, which may typically extract
a sequence of η bits from ρs;

Fig. 1. enc(att0(), r, sk) Fig. 2. att0()
.
= att0()

• a machine Tf for f : computes the output of a public
function depending on its arguments;

• a machine Tatti for atti: performs some attacker
computation, depending on its arguments, η and ρr.

To interpret a term, one can consider the term as a tree
of (sub)terms, and recursively call the corresponding Turing
machine from the leaves to the root. Going back to the term
enc(att0(), r, sk) occurring in Eq. (2), its possible values are
obtained by running the simulation described in Fig. 1.

By design, all Turing machines in the interpretation are
deterministic: the randomness is explicitly passed to capture
probabilistic behaviour (using ρs and ρr). This ensures that the
interpretation satisfies stability: two occurrences of att0() in
the term imply two computations of Tatt0

that deterministically
evaluate to the same value. For example, if we consider the
function symbol .

= that models equality testing, the evaluation
of Fig. 2 always returns true, which is the expected behaviour.

Note that Tatt0
and Tatt1

do not share any implicit state
and, more generally, nor would Tatti

and Tatti+1
. This may

seem counter-intuitive, as atti and atti+1 usually represent
two unknown computations of the same attacker A, that can
in practice maintain a state between successive calls. The
BC logic does not explicitly ensure this, but by modeling
conventions, we always give all the previous inputs of atti

also to atti+1. As a result, in the simulations one can make
Tatti+1

re-perform all the computations of Tatti
to recompute

its state. Modelling each attacker call by a distinct machine is
a crucial design choice of the BC logic that ensures locality.

2) Protocol interactions: We now focus on protocol in-
teractions, as it will play an important role when moving
to the quantum setting. We informally describe an attacker
A in the real world as a sequence of unknown operations
{Ai}, that produces the message mi at step i, and implicitly
maintains a state ϕi between each computation. We can consider
a protocol P as a sequence of operations split by in (receive)
operations. The attacker’s operations interact with the protocol
sequence: a protocol operation P i typically uses out to send
messages, providing more knowledge to the attacker, which
can then use this knowledge to produce a message for P i+1.
E.g., considering Example 1, we define Tatt0

s.t. it simulates
A0 and returns m0, and Tatt1

s.t. on input u it first simulates
A0 to get ϕ0, and then runs A1 on ϕ0 and u.

Still considering P from Example 1, with the corresponding
syntactic frame Eq. (2), we depict in Fig. 3 the simulation that
produces the same result as the real-world interaction.

C. Indistinguishability predicate and logical rules

Once equipped with an interpretation for terms, BC defines
the predicate ∼ that will return true over two sequence of terms
if the advantage of any final distinguisher is negligible in η. As

4



Fig. 3. Final BC simulation of attacker/protocol interactions. Note the
recomputation of, e.g., Tatt0 .

for any other attacker computation step, this final distinguisher
does not inherit any states from the previous attacker calls, but
it may recompute those states if it is given the same arguments.

Consider two protocols: one can build as previously de-
scribed two sequences of terms that correctly capture all the
behaviours of their interactions with an attacker. If there exists
an attacker that can distinguish the two protocols, then there is
a set of attacker Turing machines {Tatti} that shows that the
simulation of the two sequences of terms can be distinguished,
and thus that ∼ does not hold over them. This constitutes the
soundness of the BC logic.

Finally, one needs to prove the soundness of the logical
reasoning rules by using reductions. For instance, a simple
reduction would prove that a rule such as IF-F from Example 3
is indeed a valid rule to reason about ∼.

The rules presented in this example can be proven sound for
any Turing machine attacker, without limiting its computational
power. Such rules form the core of the logic, and are referred
to as structural rules. In addition, one also needs to integrate
the classical cryptographic assumptions inside the logic.

D. Cryptographic assumptions

In BC, cryptographic assumptions are encoded as rules (also
referred to as axioms). BC includes provenly-sound rules to
encode assumptions such as PRF, IND-CCA, EUF-CMA,
ENC-KP, INT-CTXT, OTP, and DDH. Given a crypto-
graphic assumption, one can translate it into a BC rule using
terms: proving soundness of such a rule is done by providing
a reduction showing that if there exists a model that breaks
the BC assumption, then there exists an attacker that breaks
the original cryptographic assumption. As the translation is
often natural, the soundness proofs of the axioms are relatively
straightforward, and are usually fully black-box reductions. We
refer the reader to [7], [46] for the soundness proofs of the
rules corresponding to the main cryptographic assumptions.

Example 4 (DDH assumption). In BC proofs, the full
DDH assumption is not usually made: the encoded as-

sumption can be seen as a generic version that is ag-
nostic about the implementation. Concretely, one can see
the DDH assumption of BC as a generic assumption
over two function symbols, an extractor ext and a com-
biner comb, such that, for any names n1, n2, n3 we have(

ext(n1),ext(n2),comb(ext(n1), n2),comb(ext(n2), n1)
)

∼
(
ext(n1),ext(n2), ext(n3), ext(n3)

)
.

For a cyclic group with generator g, the extractor function
would be ext(n) := gn and the combiner comb(t, u) := tu,
and the DDH over the group assumption implies our generic
assumption over the functions.

Example 5 (OTP assumption). For the exclusive-or operator
⊕, we only assume that it is a binary function symbol such
that for any term t and fresh name n, it allows for a one-time
pad, i.e.,

(
(t⊕ n) ∼ n

)
.

For any security proof of a protocol that uses ⊕, one
typically does not need to specify that ⊕ may be associative and
commutative. Such a proof then gives us security guarantees,
regardless of whether the concrete implementation of ⊕ is
associative or not.

To summarize, for proving with BC the full (computational)
security of a protocol that uses concretely instantiated prim-
itives, we first require a proof that the primitives instantiate
cryptographic assumptions. Then, we use a translation of those
assumptions in the BC proof to prove properties of the protocol.
For example, to give a computational proof of a signed Diffie-
Hellman protocol that uses Ed25519 signatures, we would use
the proof that Ed25519 signatures satisfy EUF-CMA, and
then use the corresponding EUF-CMA rule in the BC proof.

Note that it is also not uncommon to leave this question
unanswered: i.e., to propose a protocol that relies on an
assumption (e.g., PRF), for which we do not know an
instantiation that provably meets it, and the guarantee is then
phrased as “assuming that primitive X is a PRF, . . .”. Such a
proof can still be meaningful since it proves the absence of a
class of attacks, or anticipates a future provable instantiation.

E. The SQUIRREL Prover

The SQUIRREL Prover mechanizes the BC logic, and offers
additional features not present in BC. Two downsides of the
original BC logic, which are solved by SQUIRREL, are:

1) to prove the security of a protocol, one must make a proof
for each possible action orderings of the protocol, and

2) the logic only considers finite protocols, and therefore
notably only a bounded number of sessions.

As the security proof of a protocol may be very similar for
many action orderings, which are also called (symbolic) traces,
the first point implies a lot of tedious repetitions inside proofs.
The second point can be solved by performing induction over
the number of sessions, but this cannot be done inside the BC
logic, and instead requires external mathematical reasoning.

1) Protocol Specification: The SQUIRREL prover’s protocol
specification language is close to the well-known applied pi-
calculus. In Fig. 4 we give a simplified version of a key
exchange protocol based on asymmetric encryption. An Initiator

5



skI , kI , pkR
INITIATOR

skR, kR
RECEIVER

pkI ,enc(kI , pkR)

enc(kR, pkI)

Derive key:= h(s, kI)⊕ h(s, kR)

Fig. 4. Encryption based key exchange

with secret and public keys (sk I , pk I) sends some encrypted
ephemeral secret kI to a responder with keys (skR, pkR), that
answers with its own encrypted ephemeral share kR. Then,
a shared key is derived as h(s, kI) ⊕ h(s, kR), where h is
a PRF hash function and s a public seed. The derived key
should only be computable by the intended peer. The protocol
does not offer any explicit authentication. A possible implicit
authentication guarantee could be: If a party X derives a key
k with intended peer Y, then whoever can also compute the
key must be Y, and agree on the communication partners.

A basic model of this protocol is expressed in SQUIRREL
as illustrated in Listing 1. The hash and aenc instructions
declare function symbols that respectively satisfy either the
PRF assumption or the IND-CCA assumption, and the name
command declares fresh values. In the process declarations,
out and in specify outputs and inputs, new specifies sampling
fresh values, and | is for parallel composition. In the last
step of the Initiator, the instruction sIR:= is used to store the
derived key in a state. The last line of this example captures a
security property, which we discuss in next Section.

Note that the threat model is part of the input file, and
SQUIRREL can be used to verify many scenarios. For instance,
more complex versions of this running example that will be
discussed in Section V-C can include an unbounded number of
sessions and participants, and pk(skI) may not be hard-coded
inside the Responder process but received as an input.

hash H
aenc enc,dec,pk
name s,skI,skR,kIR : message

process Initiator =
new kI; new rI;
out(cI, enc(kI, rI,pk(skR)) );
in(cR,ctR);
let kR = dec(ctR,skI) in
sIR := H(s,kI) XOR H(s,kR).

process Responder =
new kR;
new rR;
in(cI, ctI);
out(cR, enc(kR, rR, pk(skI))).

system [KE] out(cI,s); (Responder | Initiator).

equiv [KE] forall t, frame@t,sIR ~ frame@t,kIR.

Listing 1. Simplified key exchange in SQUIRREL

2) The SQUIRREL meta-logic: The SQUIRREL paper [5]
introduces a meta-logic that introduces universal quantification
over the possible traces of a protocol, as well as its number of
sessions. As one can then reason at an abstract level on the
traces, a single proof in the meta-logic covers multiple traces
of the protocol, and it is now possible to consider unbounded
protocols, thus solving both previous issues.

To do so, the logic is extended with timestamp variable τ
to quantify over possible points in a trace, and macros that
depend on a protocol P , such as:

• inputP@τ , to refer to the input received by the protocol
P at timestamp τ ;

• outputP@τ for the output;
• frameP@τ for the full frame for the protocol up to this

point, which is the sequence of all previous outputs.

If we denote by pre(τ) the function that points to the previous
timestamp in the trace, and abstracting away some details,
frameP@τ would expand to frameP@pre(τ),outputP@τ .

The indistinguishability of two protocols P and Q can
be expressed in a single meta-logic formula frameP@τ ∼
frameQ@τ . This meta-logic formula then holds if for all
possible traces of the protocol, and all possible τ over those
traces, the BC frames of the protocol are indistinguishable.
In the example of the KE protocol of Listing 1, the last line
declares the security goal expressing the fact that the key
derived by the initiator is indistinguishable from some fresh
value kIR, even given all the messages sent over the network.
The proof in SQUIRREL of this goal will be described at a
high-level in Section V-C3.

We remark however that even though this implies a proof of
security for each possible number of sessions, it does not imply
the classical security for an unbounded number of sessions
because no concrete security bounds are obtained. Over this
meta-logic, there are two sets of rules. The first allows proving
that some probabilistic statement is true with overwhelming
probability, and the second is for proving indistinguishability
properties. These two sets interact: for instance, one can first
prove authentication properties of a key exchange using rules
from the first set, and then rely on these properties to prove
the secrecy of the key using the second set.

3) SQUIRREL’s mechanization: The SQUIRREL prover is
available at [2], along with the code of the running example
and the case studies. It is an interactive prover with some
built-in tactics that simplify low-level reasoning.

From a high-level point of view, most proofs inside SQUIR-
REL follow the following schema:

1) prove a set of probabilistic statements inside the dedicated
prover, such as matching conversations, or that some bad
states cannot be reached;

2) prove the desired indistinguishability, using the probabilis-
tic statements as lemmas.

The second step often relies on an induction over the length of
the trace. Concretely, the proof is usually done by assuming that
frameP@pre(τ) ∼ frameQ@pre(τ) is true, and proving that

6



frameP@τ ∼ frameQ@τ holds. By definition of the frame,
this is equal to proving that

frameP@pre(τ),outputP@τ ∼ frameQ@pre(τ),outputQ@τ

and making a case distinction over possible values of output.
As a concrete example: Fig. 4 in SQUIRREL takes 20 lines

to model, 20 lines of proof, and is then proved by SQUIRREL
in under a second.

III. ADAPTING THE BC LOGIC AND SQUIRREL TO THE
POST-QUANTUM WORLD

Proofs in the BC logic as presented in the previous section
do not guarantee security against quantum attackers.

Recall that computational proofs rely on (i) computational
assumptions, and (ii) reductions. In the context of the BC
logic, the computational assumptions are the easiest to deal
with when going to the post-quantum world: if we know that
no post-quantum secure instantiations exist for a particular
assumption, we can no longer use it in proofs. For example,
if a previous proof relied on an axiom that states that integer
factorization is hard, the proof is unsound as we can no longer
use this axiom in the post-quantum setting.

The complexity of adapting the reductions that follow from
the logic mostly revolves around revisiting the assumptions
around the term interpretation and the proof rules, which
implicitly encode attacker manipulations. Where previously the
attacker was modeled using polynomial time Turing machines,
we now need to change this to a quantum attacker.

It turns out that this modification is less straightforward than
we expected. As explained previously, the classical BC logic
uses a term representation that essentially corresponds to a
tree in which computations, including those of the attacker,
are performed in a purely local fashion. In the classical BC
setting, this allows for modeling a single attacker using multiple
local attackers: instead of explicitly communicating, subsequent
local attackers effectively recompute the results of previous
ones. This recomputation was possible since we made all
operations deterministic and moved the probabilistic aspects (of
both protocol and attacker) to two explicit random tapes. This
modeling relies on a classical result for modeling probabilistic
Turing machines as deterministic machines with a random tape.

However, for a quantum polynomial time attacker, we have
no corresponding result. Notably, a quantum attacker may
produce internal random state that we cannot influence nor
extract. This phenomenon manifests itself in the so-called no-
cloning theorem [61]: We cannot duplicate the quantum state
of a quantum machine, nor can we run a quantum machine
twice and expect to obtain the same inner state.

This directly breaks the stability of the previous interpreta-
tion, and for instance, the evaluation of Fig. 2 could now return
false. Furthermore, in the interpretation of Fig. 3, we would not
be able to recompute inside Tatt1

the same attacker state as
the one computed during Tatt0

, and therefore this evaluation
would not correspond to the run of a single interactive quantum
attacker, as was the case for classical attacker. Similarly,
the classical BC interpretation also allows for rewinding the

Fig. 5. Quantum compatible simulation of attacker/protocol interactions
without recomputation in PQ-BC. Compare this to Fig. 3.

attacker, which is impossible for quantum attackers based on
the same no-cloning theorem.

We solve these issues by defining an interpretation where the
attacker is a single black-box interactive machine, as opposed
to a set of one-shot Turing machines. This allows us to verify
a set of conditions that when met, ensure that we can provide
a sound interpretation for a quantum attacker. Concretely, to
interpret att0, we query the interactive machine once, and
to interpret att1(t), we interpret t, and give it as input to
the same interactive machine. This effectively changes the
term interpretation from a tree to a directed acyclic graph.
We will formally define such an interpretation later, but it
would intuitively be pictured as in Fig. 5. Changing the term
interpretation in this fashion leads to a wide range of subtle
changes throughout the logic.

We provide three conditions to ensure that we can give a
sound interpretation for a quantum attacker. We provide intu-
ition for them below, and formally define them in Section IV.

Condition 1 - Consistency: In the classical BC logic, the
attackers need not be consistent. We provide a concrete example,
that intuitively corresponds to the simulation of rewinding the
attacker. For two distinct terms u, v, consider the sequence of
terms att1(att0(), u), att1(att0(), v). This corresponds
to running att0, running its continuation with u, and then
making it forget that we ever gave it u (rewind the attacker)
and calling it on v.

Against a quantum attacker or black-box attacker, we cannot
do this operation, as it morally implies that we are duplicating
the attacker’s inner state at the end of att0, using each copy
to run att1 once on u and once on v.

We therefore add a syntactic condition on terms to forbid
such cases, and force that all occurrences of atti are made
with the same arguments.

Condition 2 - Monotonicity: With the new term inter-
pretation, att0 and att1 implicitly share states. This means
that when interpreting att1, we will always get an answer
that depends on the argument previously given to att0.

7



Consider for example the terms:

att0(n), att1()
.
= n

In the classical BC logic, the second term would evaluate to
false, as att1() does not depend on the distribution of n. But
if we are forced to interpret the symbols using a black box
attacker, the computation of att1() does depend on n. Thus,
we lose the locality of our logic on some terms, that we will
need to restore by further reducing the set of terms. This result
in a second syntactic condition, where the arguments of the
successive atti must form a growing sequence of terms.

Condition 3 - Balance: In the classical BC logic, we
can write formulas that do not model interactions between
a single attacker with a protocol, and for instance prove
indistinguishability formulas that would be trivially false
against a single attacker, but true for an independent set of
attackers. For instance, consider the formula

(
att0()

.
= n

)
∼(

att1(att0(), n
′)

.
= n

)
. Both sides evaluate to false, because

the attacker is completely independent of n (this is the =IND
rule). In the classical BC logic, the final distinguisher is also
a disjoint machine, which typically does not know how many
other attacker machines were executed: therefore, the formula
is true in classical BC. This reflects that classical BC allows
modeling a weaker threat model with independent attackers.
In the PQ-BC interpretation, the final attacker will be a final
call to the interactive machine, which of course knows how
many times it was previously called.

Thus, under the new and strictly stronger interpretation with
a single attacker, some formulas that held under the classical
BC logic might no longer hold. We therefore have to ensure
that none of our logical rules allows for deriving such formulas.
We implement this by introducing a syntactic condition for
PQ-BC that essentially requires that the number of attacker
calls is balanced, i.e., the number of calls is equal on both
sides of an indistinguishability operator, and which will be a
side condition of all our logical rules.

Design choices for the conditions: While the above three
conditions solve issues in designing a post-quantum sound BC
logic, they were additionally chosen because they also form a
small sufficient set of conditions to derive a usable PQ-BC
logic, as we prove in the following section. It would have been
possible, for instance, to replace the balance condition by a
specific and more refined condition for each logical rule, that
as a set would have been equivalent to the balance condition.
However, the balance condition is both necessary and more
generic, and hence we decide to use this one within PQ-BC.
Overall, the three conditions allow for a generic implementation
in the SQUIRREL prover, and yield a logic usable in practice.

IV. PQ-BC: A POST-QUANTUM BC LOGIC

In this section we first provide the core of the formal
definition of the PQ-BC logic: its term interpretation that is
suitable for post-quantum attackers, as well as the consistency
and monotonicity conditions needed to ensure the stability and
locality of the logic. This interpretation allows to consider

a single interactive attacker, rather than a set of single-
one shot attackers. In the long version [1]we also provide
the computational soundness of the logic, which is a direct
adaptation of the original BC soundness proof. Intuitively, the
original proof needed to justify how an interactive attacker
in the real world could be seen as a set of many one-shot
attackers that needed to recompute the state of the previous
attackers. With the new interpretation, we can directly use the
real-world attacker. This implies that the logic can be used to
obtained computational guarantees against quantum attackers.
Second, we provide the structural rules of the logic, as well as
the balance condition needed to prove the rules sound in the
post-quantum setting. Finally, we discuss which cryptographic
axioms - and thus which corresponding BC axioms - can
be used inside the logic to get post-quantum soundness of a
protocol analysis.

While we directly refer to a quantum attacker in definitions
and proofs, we actually design a logic with an interpretation and
rules that are computationally sound for any interactive black-
box attacker. The attacker can be instantiated as a Polynomial
Time attacker, or a Quantum Polynomial Time attacker, or
even an unbounded Turing machine attacker. It is only the
cryptographic assumptions used inside a given proof that restrict
the attacker’s computational power.

A. Syntax and Semantics

We use terms to model random samplings, public function
computations by honest parties, and black-box attacker com-
putations. For random samplings, the BC logic inherits some
conventions from the Pi calculus: notably, fresh values (such
as nonces) are called names (and have nothing to do with
identities); by convention, variables called n, n′, . . . are names
and hence freshly generated values. In Example 1 r, r′, and sk
would also be modeled as names. Let N be a set of names.
Names can be seen as fixed identifiers, where each is a pointer
to a uniformly sampled bitstring. Let Σ be a set of function
symbols, the set used for public functions and primitives. Let
{atti | i ∈ N} be a set of function symbols such that atti

is of arity i for each i ∈ N.

Definition 1. We consider terms built according to the syntax:

t ::= n ∈ N name (fresh value)
| f(t1, . . . , tk) function symbol f ∈ Σ
| atti(t1, . . . , ti) i-th attacker call

We write t⃗ or t1, . . . , tn for sequences of terms.

1) Functional model: Recall that while we consider a
quantum attacker, we model honest protocol participants as
classical Polynomial Time Turing Machines (PTTMs). To
interpret terms, we introduce the notion of a functional model
Mf , a library implementing the public function symbols and
names that are used in the protocol: for each function symbol
f (encryptions, signatures,. . . ), Tf is a PTTM, which we view
as a deterministic machine with an infinite random tape and
taking the security parameter as input. The functional model
also contains a PTTM Tn for each n ∈ N , which will extract

8



from the random tape a bitstring of length η. We give η in
unary to the PTTMs, as they are expected to be polynomial
time w.r.t. η in the computational model.

Definition 2. A functional model Mf is a set of PTTMs, one
for each name and symbol function, such that:

1) if n ∈ N (i.e., n is a name), n is associated to the machine
Tn that on input (1η, ρs) extracts a word of length η from
the tape ρs. Different names extract disjoint parts of the
random tape.

2) if f ∈ Σ is of arity n, f is associated to a machine Tf
which, on input 1η, expects n more bitstrings, and does
not use ρs.

We model public functions as deterministic functions: if
randomness is required, it should be given explicitly as an
argument to the function symbol. This modeling is needed for
the stability of the interpretation.

We can now define the basic interpretation of terms, assum-
ing that we have been given the output bitstring corresponding
to each attacker call. Based on this first interpretation, we will
then define the one where there is an actual attacker.

Definition 3. Given a functional model Mf , the security
parameter η, a mapping σ from terms atti(ϕ) to bitstrings,
and an infinite sequence of bitstrings ρs, we define the
interpretation of terms such that all occurrences of atti(ϕi)
are in the domain of σ as:

[[n]]η,σMf ,ρs
:= Tn(1η, ρs) , if n ∈ N

[[f(u⃗)]]η,σMf ,ρs
:= Tf ([[u⃗]]η,σMf ,ρs

) , if f ∈ Σ

[[atti(u⃗)]]
η,σ
Mf ,ρs

:= atti(u⃗)σ , for all i

We assume that the functional model contains function
symbols that expresses propositional formulas, which are
interpreted as expected. We denote those connectives by the
.
=,

.
∧, .⇒, . . . – note these are marked with a dot.
We will ultimately use two different sets of logical connec-

tives: (1) the dot variants, used in terms, and (2) the variants
without a dot that are part of the logic we are building. We
will illustrate their combination in Example 7.

2) Computational Model: To define the interpretation of
terms with attacker function symbols, we view terms as directed
acyclic graphs from leaves to their root.

Example 6. Consider a variant of Example 1, where we denote
tuples using ⟨. . . ⟩:

P := new sk. in(c, x). new r. out(c,enc(x, r, sk)).
in(c, y). new r′. out(c,enc(⟨y, x, y⟩, r′, sk)).

In the second step, the protocol encrypts the tuple made with
twice the second protocol input on and once the first input.

The frame corresponding to this protocol would be t0, t1:
• t0 := enc(att0(), r, sk)
• t1 := enc(⟨att1(t0),att0(),att1(t0)⟩, r′, sk)

We give the original terms and the acyclic graph variant for
this frame in Fig. 6.

The acyclic representation leads to a natural interpretation
that we can execute even when we are only given access to
a black-box straight line attacker. We illustrate this interpre-
tation in Fig. 7. When we model the interactions with an
interactive attacker, this corresponds to the high-level change
between Fig. 3 and Fig. 5.

We assume that the attacker is an oracle Quantum Turing
Machine (QTM) to obtain post-quantum soundness. We provide
the formal definition of such machines in the long version [1].
For our purpose here, it suffices to know that such a machine
behaves as a quantum computer that interactively performs
oracle queries and receives the answers. Importantly, the oracle
queries and answers are classical bitstrings, and do not contain
any quantum state. This models a quantum computer interacting
over a network with a classical protocol. One can also abstract
such an attacker as a straight-line black-box interactive process,
which is what we do in most of our proofs.

Definition 4. A computational model MA is an extension of
a functional model Mf , which provides an additional oracle
QTM A that takes as input a security parameter 1η .

Given MA, η, σ, ρs and ρr, we define the interpretation
[[t]]ηMA,ρs

of a term t as:

1) First, evaluate att0, by running A on input 1η until the
first oracle query, and store the content of the oracle
query tape o inside the substitution σ0 : {att0() 7→ o}.

2) Then, we assume that we have a substitution σi mapping
all occurrences of attj , j < i to a bitstring. We find
the smallest subterm occurrence of a attl(t1, . . . , tl)
in t. Then, for k from i to l, we write on A’s oracle
answer tape the value [[tk]]

η,σk−1

Mf ,ρs
, then continue A and

wait for the next oracle query, and store the content
of the oracle query tape o inside the substitution σk =
σk−1 ∪ {attk(t1, . . . , tk) 7→ o}.

3) Finally, given σl, where l corresponds to the biggest
occurrence of a attl, return [[t]]η,σl

Mf ,ρs
.

This interpretation does not require that a term contains all
intermediate calls to the attacker. Thus, interpreting the term
att1(t) or the sequence att0(),att1(t) leads to the same
interactions with the attacker.

3) Well-defined interpretation: Our previous definition is
not defined over all possible terms: there may not be a unique
smallest occurrence of a attl. This is expected, as there exist
terms that correspond to experiments that are not realisable
with a quantum attacker. Notably, recall that in this context,
we cannot interpret the sequence att0(),att1(u),att1(v).
Indeed, if the attacker is straight-line and black-box, it means
that we can only get one attacker answer corresponding
to att1. Therefore, to ensure that a term corresponds to
a valid experiment with respect to a quantum attacker, we
require consistency: atti should always occur with the same
arguments in the terms, i.e., corresponds to the same unique
call of this attacker’s interactive step.

Definition 5 (Consistency). A sequence of terms t⃗ is consistent
if all function symbol atti occurs with the same arguments.

9



Fig. 6. From the classical BC to the acyclic graph representation in PQ-BC

Fig. 7. Quantum compatible interpretation in PQ-BC

Lemma 1. [[⃗t]]ηMA,ρs
is well-defined if t⃗ is consistent.

Proof sketch. In the loops of step 2, all occurrences atti will
occur with the same sequence of arguments (t1, . . . , ti). Thus,
at the end of step 2, σ will indeed be a total mapping over all
terms that have as head an attacker function symbol, and the
interpretation will terminate.

4) Restoring locality: In the evaluation of the sequence
att0(),att1(u),att2(v, v

′), the value of att2(v, v
′) de-

pends on u in the new interpretation. Yet, this is not reflected
inside the term and introduces an implicit dependency that
breaks some BC rules as it breaks locality. In particular, it
breaks the =IND rule presented in Section II. To repair it, we
introduce the second term restriction.

Definition 6 (Monotonicity). A sequence of terms t⃗ satis-
fies the monotonicity restriction if for all occurrences of
atti(t1, . . . , ti) and attj(t

′
1, . . . , t

′
j) with i < j, we have

for all 1 ≤ k ≤ i that ti = t′i.

Essentially, to restore locality, we require that attacker
function symbols must always be called on at least the same
set of argument as the previous attacker calls.

Equipped with this new restriction, we can prove a lemma
that expresses the locality property of the interpretation. It can
be found in the long version [1].

From now on, we only allow in the logic terms that satisfy
the consistency and the monotonicity properties.

5) Interpretation of formulas: Atomic formulas of the
logic are built using a set of predicate symbols ∼n of
arity 2n. Given terms t1, . . . , tn, s1, . . . , sn, the predicate
∼n (t1, . . . , tn, s1, . . . , sn) will be interpreted as computational
indistinguishability between the two sequences of terms.
We use infix notation, and always omit n as it is clear
from the context, thus denoting the previous equivalence by
(t1, . . . , tn) ∼ (s1, . . . , sn). The first order formulas are then
built using the usual logical connectives ∨,∧,⊤,⊥,⇒,∃,∀,¬.
Note that these connectives are not marked with a dot, and are
part of the logic, not the terms.

Example 7. Given terms u, v, t, we can write the formula:(
(u

.⇒ v) ∼ t
)
⇔

(
(
.¬ u

.
∨ v) ∼ t

)
This formula holds because we assume that for all functional
models, .⇒,

.¬ and
.
∨ are classically interpreted.

To define a distinguisher between sequences of terms, we
must define this distinguisher as a continuation of the interactive
attacker A, and thus pass to it the quantum state of A. This
is only a technicality, and in practice we simply consider that
the continuation is the last stage of the interactive attacker.

Definition 7. Let v⃗ be a sequence of term. For any computa-
tional model MA, we denote by ϕv⃗

MA,ρs,η
the final (quantum)

configuration reached by A during a computation of [[v⃗]]ηMA,ρs
.

Definition 8. Given a computational model MA, and two
sequences of ground terms t⃗, u⃗, the formula t⃗ ∼ u⃗ is satisfied
by MA if, for every polynomial time QTM B,

|Prρs
{B([[⃗t]]ηMA,ρs

, 1η, ϕt⃗
MA,ρs,η

) = 1}
−Prρs

{B([[u⃗]],ηMA,ρs
, 1η, ϕu⃗

MA,ρs,η
) = 1}|

is negligible in η. Here, ρs is drawn according to a distribution
such that every finite prefix is uniformly sampled, and the
probabilities also depend on the inherent probabilistic behavior
of the two QTMs. The satisfaction relation is extended to full
first-order logic as usual.

In the long version [1]we give the proof of the logic’s
computational soundness. At a high level, the proof follows
naturally from our previous design of a faithful interpretation

10



=-REFL

T(u .
= u)

=-IND

T(u ̸ .= n)

when n is not
a subterm of u

=-SYM
T(u .

= v)

T(v .
= u)

Fig. 8. Truth rules of PQ-BC (identical to those of BC)

of terms that is sound for black-box interactive attackers. We
directly obtain that by quantifying over all possible MA,
the value of [[⃗t]]ηMA,ρs

describes all possible behaviours of
the protocol modelled by t interacting with any black-box
interactive attacker. Thus, if there exists an attack on the
protocol in the real world, it will correspond to an attack on
the (computational) interpretation of the terms. Furthermore,
because Definition 8 exactly quantifies universally over all
MA, if there is an attack on the protocol, the predicate is
not valid, and if there is none, it is valid. Finally, because
an interactive black-box attacker soundly models a quantum
attacker, the logic is shown to be post-quantum sound.

6) Overwhelming probabilistic truth: The classical BC logic
as well as SQUIRREL has a subset of its rule dedicated to
proving the validity of statements of the form u ∼ true.

In our case the attacker A from the computational model and
the final distinguisher B share their (quantum) tape, while in the
classical BC definition [7], A and B do not share their working
tape, but only their source of randomness Thus, compared to
the classical BC definition, as soon as u executes an attacker
machine, (u .

= u) ∼ true will not hold, as B simply checks if
an attacker machine was executed.

Note that in the classical BC logic, a proof that u ∼ true is
in fact a statement independent of the final distinguisher: we
just prove that u is equal to true with overwhelming probability.
This is what we call a probabilistic statement.

For PQ-BC, we thus define a predicate dedicated to proving
overwhelming probabilistic truth, for which we inherit all the
truth rules of BC and SQUIRREL.

Definition 9. Given a computational modelMA and a ground
term t, T(t) is satisfied by MA if,

Prρs
{[[⃗t]]ηMA,ρs

= 1}

is overwhelming in η. The satisfaction relation is extended to
full first-order logic as usual.

B. Logical rules

1) Probabilistic statements: We introduce some of the
logical rules to reason about the T() predicate, which are
all direct transpositions of the rules of the BC logic that
are statements about formulas of the form u ∼ true. Their
soundness proofs are completely similar, as the corresponding
BC rules are in fact sound for any Turing Machine, even
with unbounded computational power. This means that if the
premices are valid, so are the conclusions. We present in Fig. 8
a subset of such rules that allows to reason about the equality
between terms, with the other rules being transposed similarly.

Lemma 2. The truth rules, shown in Fig. 8, are sound in the
PQ-BC interpretation.

Omitted proofs can be found in [1].

2) Indistinguishability rules: As mentioned earlier, some
statements of classical BC are false under the single-attacker
interpretation. For example, u ∼ true is false as soon as u
contains an attacker symbol, because the final distinguisher also
executes the corresponding attacker call, and could therefore
differentiate the sides. Yet, such statements are provable inside
BC, because it does not assume the final distinguisher sees all
attacker calls. Thus, the existing BC rules are not correct in
our new interpretation, and we must add a side condition to
make PQ-BC sound.

Similar to the rules for the truth predicate T(), the indis-
tinguishability rules in Fig. 9 are also sound for any attacker,
without any assumption on their computational power. Thus, the
soundness issues only come from the fact that the distinguisher
B now inherits the state of the attacker A. In the end, the main
case where an existing BC rule becomes unsound is when it
yields in the conclusion a ∼ statement where the attacker A
is not called the same number of times on both sides, which
corresponds to the balance condition.

Definition 10 (Balance). Given a sequence of terms u⃗, we
denote by Maxatt(u⃗) the biggest index i such that the function
symbol atti appears in u⃗.
We say that u⃗ ∼ v⃗ satisfies the balance conditions, or is
balanced, if Maxatt(u) = Maxatt(v).

Most BC rules can then be transformed to PQ-BC rules
by additionally requiring the balance condition over their
indistinguishability. In practice, we will thus require that the
balance condition holds over all indistinguishabilities appearing
inside the proof tree. In the following, however, we only add
the side condition where it is needed, in order to pinpoint which
rules may break the balance condition. We present in Fig. 9 a
subset of the new rules, using the color blue to indicate the new
side-conditions. Note that the consistency and monotonicity
conditions are enforced globally, and hence also hold for all
terms appearing in rules. The CS rule requires a stronger
condition than the balance condition. Though we provide it
for completeness, this rule is not used in SQUIRREL nor in
PQ-SQUIRREL, and the balance condition is thus sufficient for
their rules to get post-quantum soundness.

Lemma 3. The indistinguishability rules, shown in Fig. 9, are
sound in the PQ-BC interpretation.

Intuitively, this means that whenever we construct a proof
in the logic, then if there is an attack on the proven formula,
there is an attack on the axioms. If we combine this with
the soundness of the logic, we get that a proof in the logic
implies the existence of a post-quantum sound reduction from
an attack on the protocol to an attack on post-quantum sound
cryptographic assumptions.

11



REFL

u⃗ ∼ u⃗

TRANS
u⃗ ∼ v⃗ v⃗ ∼ w⃗

u⃗ ∼ w⃗

SYM
v⃗ ∼ u⃗

u⃗ ∼ v⃗

FRESH
u⃗ ∼g v⃗

(u⃗, n) ∼g (v⃗, n′)

when the new names
do not occur in u⃗, v⃗

FA
u⃗ ∼ v⃗

h(u⃗) ∼ h(v⃗)

RESTR
(u⃗, s) ∼ (v⃗, t)

u⃗ ∼ v⃗
when Maxatt(u⃗) = Maxatt(v⃗)

DUP
(u⃗, t) ∼ (v⃗, t)

(u⃗, t, t) ∼ (v⃗, t, t)

EQU
T(s .

= t)

(u⃗, s) ∼g (u⃗, t)
when Maxatt(u⃗, s) = Maxatt(u⃗, t)

IFT(
u⃗, C[if s

.
= t then C0[s] else w]

)
∼ v⃗(

u⃗, C[if s
.
= t then C0[t] else w]

)
∼ v⃗

CS
(w⃗, b, u) ∼ (w⃗′, b′, u′) (w⃗, b, v) ∼ (w⃗′, b′, v′)

(w⃗, if b then u else v) ∼ (w⃗′, if b′ then u′ else v′)

when Maxatt(w⃗, b, u) = Maxatt(w⃗, b, v)
= Maxatt(w⃗′, b′, u′) = Maxatt(w⃗′, b′, v′)

Fig. 9. Indistinguishability rules of PQ-BC. We mark new side conditions in blue.

C. Cryptographic assumptions in PQ-BC

In Section II-D we discussed how BC encodes cryptographic
assumptions, such as PRF, IND-CCA, EUF-CMA, ENC-KP,
INT-CTXT, OTP, and DDH. The original proofs of sound-
ness of these encodings in [7], [46] were aimed at a classical
attacker. We revisited all these proofs, and due to their direct
black-box nature, it turns out these proofs also directly apply
against a post-quantum attacker: if there exist an instantiating
that satisfies the assumption against a quantum attacker, then
the corresponding BC axiom is post-quantum sound.

However, knowing that a BC rule is post-quantum sound w.r.t.
the cryptographic assumption does not mean that we know an
instantiation (i.e., a concrete scheme) that is secure with respect
to a quantum attacker. While we know instantiations for most of
the above assumptions with respect to a classical attacker, at this
moment we do not know of a post-quantum secure instantiation
of the DDH assumption. In the future, a candidate for post-
quantum DDH could be the CSI-DDH [42] assumption, based
on the CSIDH assumption [21]. Their concrete security is
however the subject of discussions [12], [14], [17], [51]. We
therefore omit this for now from list of allowed cryptographic
assumptions for PQ-BC.

This yields the following list of currently usable PQ-BC ax-
ioms for post-quantum proofs: PRF, IND-CCA, EUF-CMA,
ENC-KP, INT-CTXT, and OTP. Concretely, this means that
a proof in PQ-BC yields guarantees for post-quantum attackers
under the assumption that the previous axioms are instantiated
in a post-quantum secure way, e.g., by a protocol that uses
CRYSTALS-Dilithium [32] to instantiate EUF-CMA, and see
e.g. [62] for a post-quantum sound instantiation of a PRF. Out
of these assumptions, the most debatable w.r.t. instantiability
is likely ENC-KP, as discussed recently in [37].

V. MECHANIZATION IN PQ-SQUIRREL AND CASE STUDIES

In this section, we describe PQ-SQUIRREL, our extension
of SQUIRREL that produces post-quantum sound proofs in
the PQ-BC logic. We give an overview of the post-quantum

protocol analysis results that we obtained using PQ-SQUIRREL
in Table I. As we will show later, it turns out that despite the
new term interpretation and corresponding new side conditions,
several existing SQUIRREL proofs could be re-interpreted by
PQ-SQUIRREL as post-quantum sound proofs in PQ-BC.

A. PQ-SQUIRREL

1) Ensuring post-quantum soundness: To make SQUIRREL
post-quantum sound, we must specify which cryptographic
axioms are post-quantum sound, and enforce the three syntactic
side conditions from Definitions 5, 6 and 10. Furthermore,
if there are cryptographic assumptions for which we know
instantiations that are secure against classical attackers, but do
not know any post-quantum secure instantiations, we no longer
rely on them.

Recall that a substantial amount of work in adapting the BC
logic to PQ-BC was due to the flexibility in specifying multiple
attackers. In contrast, SQUIRREL specifications do not include
attacker terms: SQUIRREL automatically produces the attacker
terms from the input and output commands in the process spec-
ification, under the assumption that there is only one attacker.
Concretely, the attacker terms are produced by the interpretation
of inputP@τ , which is equal to attτ (frameP@pre(τ)). While
this means that SQUIRREL only supports a subset of the BC
logic, it strongly simplifies protocol specification for the user,
and prevents users from accidentally modeling a weaker threat
model with multiple disjoint attackers. For our post-quantum
purposes, this historical choice is very convenient: all terms
produced by the meta-logic of SQUIRREL already satisfy the
consistency and monotonicity properties.

We still need to ensure that PQ-SQUIRREL verifies the
new side conditions w.r.t. the Maxatt() on both sides of
the indistinguishability formulas from Fig. 9. Given a meta-
logic formula u⃗ ∼ v⃗, we need to check that for the maximal
timestamp element τ of the trace, input@τ appears on both
sides. If this is the case, we say that a formula satisfies the
synchronization property.

12



We cannot check the synchronization property directly since
SQUIRREL internally omits the inputs from the frames when
they are redundant, and would lead to falsely discarding proof
steps. We instead check a generalized property, which is true
if either input@τ or frame@τ or frame@pre(τ) occurs in the
frame. In the long version [1]we prove a lemma that shows
that a proof in which all steps satisfy this generalized property
can be mapped to a post-quantum proof.

2) Implementation: PQ-SQUIRREL can operate in classic
SQUIRREL mode. Additionally, it offers a post-quantum-
mode switch that can be enabled inside proof files. When
enabled, PQ-SQUIRREL operates in post-quantum mode: it only
allows tactics and axioms that have been proven post-quantum
sound, and checks synchronization for every indistinguishability
appearing at any step of a proof.

The source-code of PQ-SQUIRREL is available at [2]. Thanks
to our identification of a minimal set of simple syntactic
conditions, the PQ-SQUIRREL extension could be concisely
implemented, and only comprises a few hundred line of codes
in addition to SQUIRREL’s code base.

B. Case studies
We summarize the case studies we performed using

PQ-SQUIRREL in Table I. They fall into two categories: new
case studies for the Internet Key Exchange (IKE) standards
and of key exchange protocols based on Key-Encapsulation
Mechanisms (KEMs); and previous SQUIRREL case studies
that we could prove post-quantum sound in PQ-SQUIRREL.

All model files and the prover are at [2].
Required effort: In total, modeling the protocols took in the

order of hours, and constructing their proofs in interaction with
PQ-SQUIRREL took in the order of weeks. PQ-SQUIRREL
verifies each resulting proof file in under 10 seconds on a
laptop with a quad-core CPU at 1,8GHz.

As a side contribution, we also developed new generic tactics
for the prover that enabled the case studies. We first present
case studies in Sections V-C and V-D, and then introduce the
new tactics in Section V-E.

C. Key exchange case studies: IKE and KEM-based
1) Threat model and security properties: We modeled five

key exchange protocols, for which we proved, e.g.:
• Authentication - if a party accepts, another accepts (with

the same parameters).
• Strong Secrecy - the keys derived by the parties are

indistinguishable from fresh random values.
In these initial case studies, we consider the same threat
model for all key exchange protocols: an arbitrary number
of initiators and responders willing to answer to anybody,
including to dishonest/compromised identities with attacker-
controlled keys. We did not yet prove properties with respect to
dynamic corruptions nor more complex security properties like
perfect forward secrecy, and we consider them out of scope
for this work. We stress however that in a similar fashion
to EASYCRYPT and CRYPTOVERIF, PQ-SQUIRREL does not
have any hard-coded threat model, and these case studies can
be extended in future work.

2) IKE case studies: The IKE standards, version 1 [41] and
2 [41], specify suites of key exchanges. They are Diffie-Hellman
key exchanges that support multiple authentication modes.
RFC 8784 [34] addresses the issue of quantum computers
breaking the DDH assumption, and its authors claim that the
authentication mode based on a pre-shared key in version 1
(IKEV1PSK) is post-quantum sound. For the same purpose, they
also define a way to extend version 2 so that the final key
computation depends on a pre-shared key.

For IKEV1PSK, we use PQ-SQUIRREL to prove that a
pre-shared key between two entities allows to derive an
authenticated secret key indistinguishable from a random.

We also analyze the version 2 protocol with signatures for
the authentication and extended with the pre-shared key, which
we call IKEV2SIGN

PSK . The proof of IKEV2SIGN
PSK is simpler than

IKEV1PSK, because the signatures simplify the derivation of
the authentication property.

3) KEM based key exchanges: KEMs are currently con-
sidered as a possible replacement for DH-like key exchanges.
KEMs abstract mechanisms that generate and send fresh key
material encrypted to another party, from which both parties
derive a fresh shared key. Some generic constructions of KEM
based key exchanges have been proposed in [18], [35], and have
for instance been expanded into a full alternative to TLS in [54]
or as post-quantum sound variants of the Signal X3DH hand-
shake [38]. These key exchanges were specifically designed to
not rely on any DH-like operations, and their security instead
relies on assumptions on the corresponding KEM constructions,
i.e., IND-CCA.

In PQ-SQUIRREL, we generally model KEM-based key
exchanges by modeling some common internals of KEMs:
generating fresh key material, sending this encrypted to the
other party, and then deriving a key from this material at both
parties using a key derivation function.

The basic KEM-based key exchange pattern is to perform the
KEM operation at both parties with respect to their peer’s long-
term public keys, and then to xor the two resulting fresh keys
(one for each direction). This generic pattern was illustrated
in our example from Fig. 4. As the knowledge of both fresh
keys is needed to derive the final key, the attacker cannot
obtain it unless it knows both long-term private keys. Note that
such schemes provide implicit authentication, but not (explicit)
authentication: only a trusted party can derive the final key,
but there is no guarantee that such a party exists.

In our specification, we use enc to talk about an abstract
KEM construction, while in practice, it is referred to as
the encapsulation mechanism, and the decryption is the
decapsulation. Presenting it using an encryption symbol directly
allows to model it inside PQ-SQUIRREL, but this does not
affect the validity of the proofs.

For all our KEM based case studies, our models include an
unbounded number of initiators with distinct secret decapsula-
tion keys skI , each willing to initiate an unbounded number
of sessions with any honest responder with encapsulation key
pkR, as well as an unbounded number of honest responders

13



Protocol LoC Primitives and Assumptions Security properties
h sign enc ⊕
New case studies of key exchange protocols

IKEV1PSK [20] 850 PRF Strong Secrecy & Authentication
IKEV2SIGN

PSK [34], [41] 300 PRF EUF-CMA Strong Secrecy & Authentication
KEBCGNP [18] 355 PRF IND-CCA OTP Strong Secrecy
KEFSXY [35] 620 PRF IND-CCA OTP Strong Secrecy
SC-AKE [38] 745 PRF SUF-CMA IND-CCA OTP Strong Secrecy & Authentication

Proving post-quantum soundness of SQUIRREL case studies [5]
Basic Hash [19] 100 PRF Authentication & Unlinkability
Hash Lock [40] 130 PRF Authentication & Unlinkability
LAK (with pairs) [39] 250 PRF Authentication & Unlinkability
MW [49] 300 PRF OTP Authentication & Unlinkability

Feldhofer [33] 270
ENC-KP
INT-CTXT

Authentication & Unlinkability

Private Authentication [7] 100
ENC-KP
IND-CCA

Anonymity

TABLE I
PQ-SQUIRREL CASE STUDIES: WE CONSTRUCTED NEW MODELS OF KEY EXCHANGE PROTOCOLS WITH STATIC KEY COMPROMISE, AND REVISITED

PREVIOUS SQUIRREL PROTOCOL MODELS. PQ-SQUIRREL PROVES THAT THESE PROTOCOLS ARE COMPUTATIONALLY POST-QUANTUM SECURE WHEN THEY
ARE IMPLEMENTED WITH POST-QUANTUM SECURE PRIMITIVES FOR EACH OF THEIR ASSUMPTIONS.

willing to engage with an unbounded number of sessions with
any arbitrary public key that may be attacker-controlled.

Recall that a generic KEM based construction does not
provide explicit authentication properties; thus, for KEM based
key exchange we only prove the strong secrecy of the derived
keys. In our basic example of Fig. 4, this would be achieved
in three steps, first by using IND-CCA to hide the secret
ephemeral keys kI and kR from the attacker; second by using
the PRF assumption to derive valid keys, i.e., showing that
kdf(ex) is indistinguishable from a fresh random nx; third
by using the OTP assumptions that enforces the one-time
pad property, and thus that the final key is indistinguishable
from random, as it is always equal to nx ⊕ t for some t and
fresh random bitstring nx. For illustration purposes, the actual
PQ-SQUIRREL proof corresponding to this example can be
found along with the other case studies at [2]. Interestingly,
the proofs carried out in PQ-SQUIRREL follow this high-level
structure for the multiple KEM based case studies, and were
thus straightforward to establish.

4) Concrete case studies: The KEBCGNP protocol closely
follows the generic pattern. KEFSXY uses an additional
ephemeral key used for each session, as well as an additional
round of PRF application to the key materials before xor-ing
them. We prove the strong secrecy of the derived keys for both
protocols.

The SC-AKE protocol, intended as a possible post-quantum
replacement of Signal’s X3DH, can be seen as a variant
of KEFSXY extended with a third message send from the
Responder to the Initiator, containing a signature to provide a
form of deniable authentication. Instead of deriving a single key
k := kdf(sid, ei)⊕ kdf(sid, er), it derives two keys ks and
kf using kdf1 and kdf2. The first one is used to xor, and thus
hide, the signature of the sid sent for authentication, and the
second one is the derived key. Because of these constructions

and their properties, SC-AKE is our most complex case
study. The proof first requires proving the authentication
of the responder to the initiator, by relying on the EUF-CMA
assumption on the signature. After having shown that the
material used by the initiator to derive the secret key is from
an honest source, we can show that the secret key is strongly
secret by following the previous pattern. Such proofs illustrate
a strength of the PQ-SQUIRREL prover: it allows interactions
between a part of the logic dedicated to proving reachability
properties (e.g. authentication), and then use those properties
inside indistinguishability proofs (e.g. secrecy).

D. Proving post-quantum soundness of SQUIRREL case studies

We used PQ-SQUIRREL to verify the proofs of the nine
previous SQUIRREL case studies. Out of those, PQ-SQUIRREL
was able to prove that six were post-quantum sound, and three
were not, as they relied on the DDH assumption.

Thus, it seems that most existing proofs in SQUIRREL are
already post-quantum sound, even though we know it is possible
to prove statements in SQUIRREL that are not post-quantum
sound. This appears to be because the proofs of realistic
protocols rely on an induction on the length of the trace. We
then reason on frames of protocols and prove that each of their
possible last messages does not break the indistinguishability.
This pattern seems to avoid violating the balance condition.

E. Additional tactics

1) A Non-Malleability tactic: SQUIRREL already had a tactic
for the IND-CCA axiom, which is the one usually used for
KEM. However, the IND-CCA axiom is not only used to
provide secrecy in the context of KEM, but also a form of weak
authentication. If a party receives the ciphertext of something
that corresponds to an honest ephemeral share, then there exists
a session of an honest initiator that sent it. To prove such
an authentication property, the IND-CCA axiom is ill-suited,

14



because we rely on the non-malleability property of the scheme,
which is implied by IND-CCA [11], [50]. We developed a
new tactic that allows to say that encrypted honest secret share
cannot have been tampered with by the attacker, and must have
been sent by some honest party. In [1], we provide the formal
definition of the meta-logic rule, as well as its soundness proof
from the original IND-CCA BC axiom. Using this tactic, we
could directly prove the weak authentication of the schemes.

2) Global tactics: Inside SQUIRREL proofs, we often
consider statements of the form

frame@pre(τ), t frame@pre(τ), t′

We then show that t and t′ are indistinguishable while
leaving the frame abstract. Most SQUIRREL tactics only allow
manipulating the terms appearing inside t and t′. However, we
sometimes need to perform actions globally: not only on t and
t′ but also on the terms that may appear inside frame@pre(τ),
i.e., all the terms inside the protocol. We implemented four
new tactics that enable such global manipulations:

• a tactic to globally substitute a name by a fresh name;
• a tactic that allows to prove the indistinguishability of

two protocols by proving their functional equivalence, i.e.,
that they in fact produce exactly the same distributions
with overwhelming probability;

• an IND-CCA2 tactic to replace all occurrences of some
cipher by a version with perfectly hidden plaintext; and

• a PRF tactic to replace all occurrences of the hash of a
given message by the same random.

In comparison, the original SQUIRREL tactic for PRF only
allows to replace one instance of a hash inside t by a random
as long as one can prove this hash was never computed before
by the protocol.

We provide the formal definitions as well as proof of
soundness for the tactics in [1].

VI. CURRENT LIMITATIONS AND FUTURE WORK

A. Minimality of the syntactic conditions

Each of the three syntactic conditions is needed to forbid
unsound operations over quantum attackers, as illustrated
by the three examples in Section III. However, they may
not be the minimal possible conditions, and our conditions
do reduce expressivity. Notably, our current restrictions rule
out zero knowledge proofs, whose security analysis often
requires rewinding. However, our current assessment is that any
weakening of the conditions would inherently be very domain
specific, and thus only useful for a small set of protocols.
For instance, while we could have loosened the consistency
condition to allow for some particular form of post-quantum
sound rewinding [58], [60], all such techniques are dedicated to
particular cases. We currently believe it would be very difficult
to derive a general post-quantum rewinding technique (see
e.g. [4]).

B. Scope of the tool

In terms of security properties, we have already used
PQ-SQUIRREL to verify a range of properties like unlinkability,
anonymity, strong secrecy, and authentication. In general, it
allows expressing properties using arbitrary first-order logic
formula, which can mix indistinguishability properties and
reachability properties, and can thus be used to express all
classical security properties.

For protocols, PQ-SQUIRREL cannot currently carry out
proofs that require rewinding or that are in the ROM, but such
restriction do not hinder proving a wide range of protocols
from the literature. As discussed previously, it is unclear
which kind of rewinding should be integrated currently in
Squirrel. Integrating the ROM (and QROM) into PQ-BC and
PQ-SQUIRREL could be interesting future work. However,
while (Q)ROM is often needed for the analysis of primitives,
it is less often needed for protocols. A class of protocol we
cannot typically verify are e-voting protocols, that often rely
on the ROM. However, there is a long-standing debate on the
ROM model, because it is not realizable in practice. Typically,
it is often preferable to use the PRF assumption when a secret
seed is derived in the protocol, as we did in our case studies.
In other cases, integrating results such as [52] into PQ-BC
might offer a solution in the future.

Besides protocols whose proofs require rewinding or the
ROM, we are not aware of any inherent limitations of the
logic or the prover that would hinder the proofs of other post-
quantum protocols.

C. Refining the case studies

The goal of our case studies is to show the usability and
scalability of the tool, not to provide an exhaustive analysis of
each of them. For example, our current key exchange analysis
only consider a model with static compromise. However, this
is not an inherent limitation of the logic, and the threat model
is only part of the protocol modeling. As such, a natural
future work is to refine our case studies and try to prove more
advanced properties such as PFS or PCS.

D. Improving automation

Based on our first set of case studies, PQ-SQUIRREL shows
the potential to tackle complex case studies such as the proposal
of a recent post-quantum TLS [55]. Performing such complex
case studies would benefit from improving the automation in
PQ-SQUIRREL. We see two main possible routes to achieve
this. First, some low level reasoning about message equalities
and inequalities is already automated in many cases, but could
be improved by leveraging SMT solvers. Second, the unique
abstraction level of our logic enables us to reason both at the
high-level of the executions traces as well as at the low level
of the indistinguishability of two messages. This abstraction
opens the door for the application of more advanced constraint
solving techniques, similar to the one used in symbolic tools,
which can further improve automation.

15



VII. CONCLUSION

We defined the PQ-BC logic for proving protocol security
against quantum attackers, and a corresponding PQ-SQUIRREL
prover to mechanize the reasoning. In the process of extending
the BC logic for this purpose, we identified three simple
syntactic side conditions that are both necessary and suffi-
cient; these conditions, and the new tactics we developed
for PQ-SQUIRREL, can be useful for the classical setting as
well. Our initial case studies show that PQ-SQUIRREL can be
effectively used to prove post-quantum protocol security.

Acknowledgments.: We thank Hubert Comon for many
interesting discussions.

REFERENCES

[1] Long version of this paper. https://hal.inria.fr/hal-03620358.
[2] The Squirrel Prover repository. https://github.com/squirrel-prover/squirr

el-prover/.
[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Cam-

pagna, Ernie Cohen, Benjamin Gregoire, Vitor Pereira, Bernardo Portela,
Pierre-Yves Strub, and Serdar Tasiran. A Machine-Checked Proof of
Security for AWS Key Management Service. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pages 63–78, London United Kingdom, November 2019. ACM.

[4] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum
attacks on classical proof systems: the hardness of quantum rewinding.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 474–483. IEEE, 2014.

[5] David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos,
and Solène Moreau. An interactive prover for protocol verification in
the computational model. In 42nd IEEE Symposium on Security and
Privacy (S&P 2021). IEEE, 2021.

[6] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal Analysis
of Vote Privacy Using Computationally Complete Symbolic Attacker.
In Computer Security - 23rd European Symposium on Research in
Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proceedings, Part II, pages 350–372, 2018.

[7] Gergei Bana and Hubert Comon-Lundh. A Computationally Complete
Symbolic Attacker for Equivalence Properties. In Proceedings of the 21st
ACM Conference on Computer and Communications Security (CCS’14),
pages 609–620, Scottsdale, Arizona, USA, November 2014. ACM Press.

[8] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-
Han Hung, Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou.
EasyPQC: Verifying post-quantum cryptography. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2564–2586, 2021.

[9] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial. In
Foundations of Security Analysis and Design VII: FOSAD 2012/2013
Tutorial Lectures, Lecture Notes in Computer Science, pages 146–166.
Springer International Publishing, Cham, 2014.

[10] David Basin, Ralf Sasse, and Jorge Toro-Pozo. Card brand mixup attack:
Bypassing the PIN in non-Visa cards by using them for Visa transactions.
In 30th USENIX Security Symposium USENIX Security 21), 2021.

[11] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
Relations among notions of security for public-key encryption schemes.
In Annual International Cryptology Conference, pages 26–45. Springer,
1998.

[12] Daniel J Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
Quantum circuits for the CSIDH: optimizing quantum evaluation of
isogenies. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 409–441. Springer,
2019.

[13] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candidate.
In IEEE Symposium on Security and Privacy (SP 2017), pages 483–502.
IEEE, 2017.

[14] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson. A note
on the security of CSIDH. In Progress in Cryptology – INDOCRYPT
2018, pages 153–168, Cham, 2018. Springer International Publishing.

[15] B. Blanchet. A Computationally Sound Mechanized Prover for Security
Protocols. IEEE Transactions on Dependable and Secure Computing,
5(4):193–207, October 2008. Conference Name: IEEE Transactions on
Dependable and Secure Computing.

[16] Bruno Blanchet. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends® in Privacy
and Security, 1(1-2):1–135, October 2016. Publisher: Now Publishers,
Inc.

[17] Xavier Bonnetain and André Schrottenloher. Quantum security analysis
of CSIDH. Advances in Cryptology–EUROCRYPT 2020, 12106:493,
2020.

[18] Colin Boyd, Yvonne Cliff, Juan M. Gonzalez Nieto, and Kenneth G.
Paterson. One-round key exchange in the standard model. International
Journal of Applied Cryptography, 1(3):181, 2009.

[19] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog.
Formal verification of privacy for RFID systems. In CSF, pages 75–88.
IEEE Computer Society, 2010.

[20] David Carrel and Dan Harkins. The Internet Key Exchange (IKE). RFC
2409, November 1998.

[21] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: An efficient post-quantum commutative group
action. In Advances in Cryptology – ASIACRYPT 2018, pages 395–427,
Cham, 2018. Springer International Publishing.

[22] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the Signal messaging
protocol. Journal of Cryptology, 33(4):1914–1983, 2020.

[23] Hubert Comon, Charlie Jacomme, and Guillaume Scerri. Oracle
simulation: a technique for protocol composition with long term shared
secrets. In Proceedings of the 27st ACM Conference on Computer and
Communications Security (CCS’20), Orlando, USA, November 2020.
ACM Press.

[24] Hubert Comon and Adrien Koutsos. Formal Computational Unlinkability
Proofs of RFID Protocols. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium (CSF’17), pages 100–114, Santa
Barbara, California, USA, 2017. IEEE Computer Society Press.

[25] V. Cortier, C. C. Drăgan, F. Dupressoir, B. Schmidt, P. Strub, and
B. Warinschi. Machine-Checked Proofs of Privacy for Electronic Voting
Protocols. In 2017 IEEE Symposium on Security and Privacy (SP), pages
993–1008, May 2017. ISSN: 2375-1207.

[26] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2017), pages 1773–1788. ACM, 2017.

[27] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A formal analysis
of IEEE 802.11’s WPA2: Countering the kracks caused by cracking the
counters. In 29th USENIX Security Symposium (USENIX Security 2020),
pages 1–17. USENIX Association, 2020.

[28] Maria Luisa Dalla Chiara, Roberto Giuntini, and Richard Greechie.
Reasoning in quantum theory: sharp and unsharp quantum logics,
volume 22. Springer Science & Business Media, 2013.

[29] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella-Beguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue. Implementing and Proving the TLS 1.3 Record Layer. In
2017 IEEE Symposium on Security and Privacy (SP), pages 463–482,
May 2017. ISSN: 2375-1207.

[30] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan
Protzenko, Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand,
Itsaka Rakotonirina, and Yi Zhou. A Security Model and Fully Verified
Implementation for the IETF QUIC Record Layer. page 17.

[31] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[32] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 238–268, 2018.

[33] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong
authentication for RFID systems using the AES algorithm. In CHES,
volume 3156 of Lecture Notes in Computer Science, pages 357–370.
Springer, 2004.

[34] Scott Fluhrer, Panos Kampanakis, David McGrew, and Valery Smyslov.
Mixing Preshared Keys in the Internet Key Exchange Protocol Version
2 (IKEv2) for Post-quantum Security. RFC 8784, June 2020.

16

https://hal.inria.fr/hal-03620358
https://github.com/squirrel-prover/squirrel-prover/
https://github.com/squirrel-prover/squirrel-prover/


[35] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Strongly Secure Authenticated Key Exchange from Factoring, Codes,
and Lattices. Technical Report 211, 2012.

[36] Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives.
arXiv:1705.02417 [quant-ph], May 2017. arXiv: 1705.02417.

[37] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous,
Robust Post-Quantum Public Key Encryption. 2021. https://ia.cr/2021/7
08.

[38] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas
Prest. An efficient and generic construction for Signal’s handshake
(X3DH): Post-quantum, state leakage secure, and deniable. In Public-
Key Cryptography – PKC 2021, pages 410–440, Cham, 2021. Springer
International Publishing.

[39] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for
unbounded verification of privacy-type properties. J. Comput. Secur.,
27(3):277–342, 2019.

[40] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM
Trans. Inf. Syst. Secur., 13(1):7:1–7:23, 2009.

[41] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero
Kivinen. Internet Key Exchange Protocol Version 2 (IKEv2). RFC 7296,
October 2014.

[42] Tomoki Kawashima, Katsuyuki Takashima, Yusuke Aikawa, and Tsuyoshi
Takagi. An efficient authenticated key exchange from random self-
reducibility on CSIDH. In International Conference on Information
Security and Cryptology, pages 58–84. Springer, 2020.

[43] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated
verification for secure messaging protocols and their implementations: A
symbolic and computational approach. In IEEE European symposium
on security and privacy (EuroS&P 2017), pages 435–450. IEEE, 2017.

[44] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. Noise
Explorer: Fully automated modeling and verification for arbitrary Noise
protocols. In IEEE European Symposium on Security and Privacy
(EuroS&P 2019), pages 356–370. IEEE, 2019.

[45] A. Koutsos. The 5G-AKA Authentication Protocol Privacy. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P), pages
464–479, June 2019.

[46] Adrien Koutsos. Preuves symboliques de propriétés d’indistinguabilité
calculatoire. Theses, Université Paris-Saclay, September 2019.

[47] B. Lipp, B. Blanchet, and K. Bhargavan. A Mechanised Cryptographic
Proof of the WireGuard Virtual Private Network Protocol. In 2019 IEEE
European Symposium on Security and Privacy (EuroS P), pages 231–246,
June 2019.

[48] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In
Computer Aided Verification, Lecture Notes in Computer Science, pages
696–701, Berlin, Heidelberg, 2013. Springer.

[49] David Molnar and David A. Wagner. Privacy and security in library
RFID: issues, practices, and architectures. In CCS, pages 210–219. ACM,
2004.

[50] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. On the
equivalence of several security notions of key encapsulation mechanism.
IACR Cryptol. ePrint Arch., 2006:268, 2006.

[51] Chris Peikert. He gives C-sieves on the CSIDH. Advances in Cryptology–
EUROCRYPT 2020, 12106:463, 2020.

[52] Phillip Rogaway. Formalizing human ignorance. In International
Conference on Cryptology in Vietnam, pages 211–228. Springer, 2006.

[53] Guillaume Scerri and Stanley-Oakes Ryan. Analysis of Key Wrapping
APIs: Generic Policies, Computational Security. pages 281–295. IEEE
Computer Society, June 2016.

[54] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-Quantum
TLS Without Handshake Signatures. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’20, pages 1461–1480, New York, NY, USA, October 2020. Association
for Computing Machinery.

[55] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS
without handshake signatures. In ACM SIGSAC Conference on Computer
and Communications Security (CCS 2020), pages 1461–1480. ACM,
2020.

[56] Fang Song. A note on quantum security for post-quantum cryptography.
In International Workshop on Post-Quantum Cryptography, pages 246–
265. Springer, 2014.

[57] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and

Santiago Zanella-Béguelin. Dependent types and multi-monadic effects
in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’16, pages
256–270, New York, NY, USA, January 2016. Association for Computing
Machinery.

[58] Dominique Unruh. Quantum proofs of knowledge. In Annual inter-
national conference on the theory and applications of cryptographic
techniques, pages 135–152. Springer, 2012.

[59] Dominique Unruh. Quantum Relational Hoare Logic. Proceedings of
the ACM on Programming Languages, 3(POPL):1–31, 2019.

[60] John Watrous. Zero-knowledge against quantum attacks. SIAM Journal
on Computing, 39(1):25–58, 2009.

[61] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802–803, October 1982.

[62] Mark Zhandry. How to construct quantum random functions. Journal of
the ACM (JACM), 68(5):1–43, 2021.

17

https://ia.cr/2021/708
https://ia.cr/2021/708

	Introduction 
	Background: the classical BC logic and Squirrel
	Specifying protocol behaviours using syntactic terms
	From protocols to terms
	Modeling attacker computations
	Reasoning about terms

	A faithful computational interpretation
	Interpreting terms
	Protocol interactions

	Indistinguishability predicate and logical rules
	Cryptographic assumptions
	The Squirrel Prover
	Protocol Specification
	The Squirrel meta-logic
	Squirrel's mechanization


	Adapting the BC logic and Squirrel to the post-quantum world 
	PQ@汥瑀瑯步渠-BC: A Post-Quantum BC logic 
	Syntax and Semantics
	Functional model
	Computational Model
	Well-defined interpretation
	Restoring locality
	Interpretation of formulas
	Overwhelming probabilistic truth

	Logical rules
	Probabilistic statements
	Indistinguishability rules

	Cryptographic assumptions in PQ@汥瑀瑯步渠-BC

	Mechanization in PQ@汥瑀瑯步渠-Squirrel and Case Studies 
	PQ@汥瑀瑯步渠-Squirrel
	Ensuring post-quantum soundness
	Implementation

	Case studies
	Key exchange case studies: IKE and KEM-based
	Threat model and security properties
	IKE case studies
	KEM based key exchanges
	Concrete case studies

	Proving post-quantum soundness of Squirrel case studies
	Additional tactics
	A Non-Malleability tactic
	Global tactics


	Current limitations and future work
	Minimality of the syntactic conditions
	Scope of the tool
	Refining the case studies
	Improving automation

	Conclusion 
	References

