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Abstract—During the last decades, many advances in
the field of automated security protocol analysis have
seen the field mature and grow from being applica-
ble to toy examples, to modeling intricate protocol
standards and finding real-world vulnerabilities that
extensive manual analysis had missed.

However, modern security protocols often contain
elements for which such tools were not originally
designed, such as protocols that construct, by design,
terms of unbounded size, such as counters, trees, and
blockchains. Protocol analysis tools such as Tamarin
and ProVerif have some very restricted support, but
typically lack the ability to effectively reason about
dynamically growing unbounded-depth terms.

In this work, we introduce subterm-based proof
techniques that are tailored for automated protocol
analysis in the Tamarin prover. In several case studies,
we show that these techniques improve automation
(allow for analyzing more protocols, or remove the
need for manually specified invariants), efficiency (re-
duce proof size for existing analyses), and expressive
power (enable new kinds of properties). In particular,
we provide the first automated proofs for TreeKEM,
S/Key, and Tesla Scheme 2; and we show substantial
benefits, most notably in WPA2 and 5G-AKA, two
of the largest automated protocol proofs.

1. Introduction

The Tamarin prover is a state-of-the-art security
protocol analysis tool that has been used for the analysis
of highly detailed models of a wide range of security
protocols. Notable examples include TLS 1.3, 5G-AKA,
Wifi’s WPA2, and EMV (Chip-and-Pin) [1], [2], [3], [4],
in each case finding attacks or proving new properties.
Tamarin was first released in 2012 [5] and has seen
substantial development over the last decade. This in-
cludes extending its range of equational theories (e.g.,
best-in-class Diffie-Hellman modeling [6], exclusive or [7],
multisets and bilinear pairing [8], and a generalization of
subterm-convergent user-specific theories [9]), induction,

improved proof-finding heuristics, improved reasoning
methods [10], a wider range of modeling options [11] and
support for observational equivalence [12].

Despite this active development and significant
progress, there are still several types of protocol anal-
ysis problems that pose a challenge for Tamarin. In
the default setting, Tamarin’s backwards search works
by refining so-called dependency graphs until either a
solution is found (typically a counterexample to, or
attack on, the intended security property) or it can be
shown that no solutions exist (corresponding to a proof
that the property holds). It can additionally use a form
of induction over trace events. However, Tamarin 1.6
(the latest version) cannot reason about arbitrary-depth
subterms. Notably, while arbitrary-depth subterms did
not occur in classical simple protocol models (e.g., [13]),
they do occur naturally in detailed case studies of modern
protocols. Examples of such protocols include hash-chain
based protocols (blockchains, Tesla, S/Key), protocols
based on tree structures (TreeKEM), and protocols using
natural numbers (YubiKey, PKCS#11, WPA2, 5G-AKA).
In each of the mentioned protocols, there is typically a
relation between temporal ordering and the construction
of a dynamic term. For example, counters may increase
monotonically, trees might be extended while keeping
existing subtrees intact, and blockchains are strictly
increasing terms by design. Such protocols pose a new
kind of challenge to the automated provers, as they
introduce a new form of unboundedness: not only do
we want to consider an unbounded number of sessions,
but each session of the protocol itself may, by design,
construct terms of unbounded size.

In this work, we set out to extend the Tamarin prover
version 1.6 with a subterm relation and more generic
subterm-based proof techniques. Our goal is two-fold.
First, we extend the language of security properties
for more expressive power. Second, we improve the
automation of Tamarin for more complex case studies,
for example by improving the analysis times, or by
enabling automated analysis of protocols that could
previously only been analyzed with manual guidance
(e.g., by specifying reusable lemmas or invariants). This



goal of improving automation is one of the main aspects
of our design choices.

Contributions. Our main contribution is the intro-
duction of subterms and subterm-based proof techniques
suitable for automated analysis of security protocols
with the Tamarin Prover. This enables, for example,
automated analysis of hash-chain based protocols and
reasoning about natural numbers, in the presence of
equational theories.

In particular, our new proof techniques enable the first
automated analysis of the TreeKEM, S/Key, and Tesla
Scheme 2 protocols, where a subterm relation both helps
simplify the proof and expressing the desired security
properties, and additionally significantly improve the
automation level in case studies on YubiKey, PKCS#11,
CH’07, and two of the largest Tamarin case studies to
date: WPA2 and 5G-AKA; in particular they remove the
need for certain manually specified invariants (reusable
lemmas and oracles) and reduce proof size and proving
time (up to 30x).

Related Work. ProVerif [14] is the main other
widely used automated protocol verifier in the unbounded
setting. It was extended with support for natural num-
bers with GSVerif [15] and as a builtin later on [16],
which enabled the analysis of versions of the Yubikey
and PKCS#11 protocols. They handle natural numbers
similar to our approach, where they have a dedicated
type, and a special proof technique that helps reasoning
about monotonous counters. However, our approach is
more general as we build over a subterm ordering that
has a broader scope of applications. Furthermore, due to
the ProVerif-internal limitation of not having support for
associative-commutative operators, they restrict them-
selves to natural numbers with an increment operator
instead of the more powerful addition. In practice, this
design choice means that in ProVerif one can only model
adding a constant to a variable. In contrast, our approach
also allows specifying the addition of two variables. We
note that the manual of ProVerif version 2.04 [17] refers
to a subterm predicate, but this is not a proof technique:
the subterm predicate can only be used in the premise
of restrictions, and thus only to restrict the possible
behaviors of a protocol. We do not know of any paper
or case study in ProVerif that refers to this predicate.

Both Scyther [18] and CPSA [19], [20] use a proof
technique that links fresh values occurring inside a term
to where this value originates from. Such a technique im-
plicitly relies on some specific case of a subterm ordering
notion, but in a coarse and very restricted way compared
to our approach. Notably, there is no explicit subterm
predicate that can be used to specify invariants over
the protocol, like monotonicity. Furthermore, Scyther
does not support equational theories. We are not aware
of any fresh-value subterm technique used inside the
Maude-NPA [21] tool.

A first prototype of natural numbers for Tamarin
was proposed in the Master Thesis of [22]. It contained a

dedicated type system and its proof techniques were quite
restricted. It did not contain any proofs of correctness,
and was never integrated into Tamarin.

Some of our case studies use and extend prior
Tamarin models by several authors. The two main speed-
ups that we obtain are over the 5G-AKA model [2] and
the WPA2 model [3]. In terms of scale, these are also
the largest formal models available for these protocols.
We also speed-up YubiKey and PKCS#11, which were
studied using the previously mentioned GSVerif [15] as
well as Sapic [23], a Tamarin front-end that uses an
applied pi-calculus as its input language. We note that
our extensions naturally carry over to Sapic.

Our novel case studies, TreeKEM [24], S/Key [25],
and Tesla Scheme 2 [26], do not have any automated
proofs that we know of. Tesla Scheme 1 was proven secure
in [27], in which Scheme 2 was mentioned as an example
that showcases the limitations of Tamarin.

Reproducibility. We provide the source code of
our extended Tamarin version as well as our case studies
at [28]. Alternatively, we provide a docker that contains
pre-built binaries of the multiple Tamarin versions as
well as our example, allowing to reproduce the results
from Tables 1 and 2.

After installing Docker1, one simply has to pull the
image and enter it to reproduce our results:
docker pull securityprotocolsresearch/tamarin:st
docker run -it securityprotocolsresearch/tamarin:st bash

Overview. We first provide the required background
on Tamarin in Section 2 and then formally describe
in Section 3 our extensions over subterms and natural
numbers. We report on our case studies in Section 4. We
give additional details about Tamarin and the full proofs
of the soundness and completeness of our extensions in
the extended version [29].

2. Background: The Tamarin Prover

We now introduce the theoretical background needed
for our extensions.

Messages. Messages sent over the network are
abstracted by so-called terms, which are built over a set
of atoms by function application from a set of function
symbols Σ. The atoms are drawn either from a set of
constant values N or a set of variables V , and we denote
by TΣ(V, N) the corresponding set of terms. Each atomic
value can be of the generic message sort msg, or of the
sub-sort fresh to model the sampling of a random value
inside a protocol, or of the sub-sort pub to model a public
and attacker-known constant. fresh values are prefixed by
∼ and pub values by $. For instance, with Σ = {enc, dec},
the term enc(m, ∼sk) models the encryption of some
variable message m with a secret key sk. For a term
f(t1, . . . , tn), we say that f occurs at the top of the
terms, and that each ti occurs below f .

1. https://docs.docker.com/get-docker/
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To capture the cryptographic properties of the primi-
tives modeled by the function symbols, we define as an
equational theory the equality relations that hold over
terms. For a symmetric encryption, we would declare the
following equation:

dec(enc(m, k), k) = m

In Tamarin, there is a builtin model for pairs, denoted by
⟨x, y⟩ and with the associated projections fst, snd where
we have the following equation for the first projection

fst(⟨x, y⟩) = x

Formally, an equation is an unoriented pair t = t′

of terms in TΣ(V ), and an equational theory is a set
E of equations, which together introduce a congruence
relation =E over terms. In Tamarin, we require from E
that each term can be rewritten to a so-called normal
form modulo E. In most cases, E will be clearly fixed
by the context in which case we simply write = for =E .

Looking forward, equations will also be used to
capture constraints over terms in the solving procedure.
We will then need to consider the possible set of solutions
of an equation. An E-unifier for an equation t = t′ is a
substitution σ that is a mapping from variables to terms
with tσ =E t′σ. The set of unifiers for a given equation
is usually infinite, e.g., x = x is true for any substitution
of the variable x. Thus, we only consider a so-called
complete set of unifiers CSUE(t = t′), which is a subset
of all unifiers such that they can be instantiated to cover
all unifiers. Intuitively, if CSUE(t = t′) is empty for a
given equation, it means that it can never be satisfied.

Only the equalities defined by the equational theory
hold. A unary function h for which we define no equation
then models an idealized hash function. Tamarin has
builtin definitions for many primitives such as symmetric
and asymmetric encryption, signatures, exclusive-or,
Diffie-Hellman, etc. Notably, Tamarin has a builtin for
multisets that have been used to model counters and
which are built with a union function symbol ++ defined
as an associative and commutative (AC) operator:

x ++ y = y ++ x x ++ (y ++ z) = (x ++ y) ++ z

We say that a symbol function f is cancellative if
there exists an equation such that f occurs at the top
on one side and some variable only occurs on the same
side, i.e., the variable may be “cancelled”. ⊕ is notably
cancellative due to the equation x ⊕ x = 0. We say a
function symbol f is reducible if there exists an equation
such that f occurs at the top on the left side of a rewriting
rule. For example, both fst and dec are reducible. Note
that we do not consider the builtin multiset symbol ++
to be reducible, because the AC-operator ++ is handled
separately in Tamarin.

Protocols. The states of threads of agents that
perform a protocol are modeled with facts of the form
F (t1, . . . , tn) ∈ F , with F taken from a set of fact names
and t1, . . . , tn ∈ TΣ(N, V ). The global state of all agents

is captured as a multiset S of such facts. A protocol
is then modelled as a set of multi-set rewriting rules,
where each rule specifies how the multiset, and thus the
protocol state, can evolve through time.

Formally, a rule is a tuple ri = (id, l, a, r) written
id : l−[a]→r where id is a unique name and l, a, r are
multisets of facts. To extract properties from this tuple,
we define name(ri) = id for the name, prems(ri) = l for
the premises that are consumed by the rule, acts(ri) = a
for the actions used to annotate the execution trace,
and concs(ri) = r for the conclusions that are produced
by the rule. The actions a are later used for specifying
security properties. Tamarin comes with several builtin
facts to model protocols: Fr(∼n) to sample fresh random
values such as nonces and keys, Out(t) and In(t) are used
for outputs to and inputs from the attacker-controlled
network, and K(t) enables reasoning about the attacker’s
knowledge. Those also come with a set of built-in rules to
model the attacker deduction over the K fact that includes
the closure of the knowledge by function application
modulo E.
Example 1. The two following rules model the beginning
of a hash chain protocol, where R1 models that each agent
samples a fresh identity id and a fresh seed k, and R2
allows to build some arbitrary long hash chain using a
loop over the agent state.

R1 : Fr(∼k), Fr(∼id)−[Init(∼id, ∼k)]→State(∼id, ∼k)
R2 : State(∼id, x)−[Chain(∼id, x)]→State(∼id, h(x))

The computation could be concluded and the hash chain
sent over the network by adding the rule

R3 : State(∼id, x)−[]→Out(h(x))

Facts can either be linear or persistent. While a linear
fact will be consumed by a rule, a persistent fact will
always stay inside the protocol state once produced.
By convention, a persistent fact name is prefixed by
the symbol !. In the previous example State is linear.
Turning it into a persistent fact !State would mean that
each step of R2 would still store inside the memory the
intermediate values of the hash chain — values that could
then be reused inside some other rules.

Formally, a set of rules RU defines a labeled transition
relation over protocol states S, where S (l−[a]→r) S′ is
possible when l−[a]→r is a valid instantiation of a rule
lx−[ax]→rx from RU , i.e., there exists a substitution σ
from variables to ground terms such that l−[a]→r =
lxσ−[axσ]→rxσ, l ⊂ S and S′ = S \♯ l ∪♯ r.

An execution in this transition system is a sequence
of states Si (i ≥ 0, Si = ∅) which are connected by rules:

S0 (l1−[a1]→r1) S1 . . . Sn−1 (ln−[an]→rn) Sn

The trace of this execution is a1, . . . , an. We denote the
set of all traces of a protocol P as traces(P ). Implicitly,
the user-specified rules of P are extended with Tamarin’s
built-in rules to generate the transition system.
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Security properties. Tamarin allows for specifica-
tion of properties in a temporal first-order logic that may
hold over the (infinite) set of traces of a protocol. Given
a trace a1, . . . , an, each ai corresponds to the multiset
of action facts that occur at timepoint i. The atoms of
the logic are then defined over message and timepoint
variables as:

• F (t1, . . . , tk)@i, where F (t1, . . . , tk) ∈ F and i is
a timepoint, which is true if there exists such an
occurrence of F (modulo substitution of variables)
in ai;

• t = t′, which holds if the equality over the terms
hold;

• i < j, which holds if the timepoint ordering holds.
Tamarin’s logic is then built over those atoms
with conjunction, disjunction, implication, and univer-
sal/existential quantification over message or timepoint
variables. A formula ϕ holds for a protocol P if it holds
over all traces of P . In Tamarin’s framework, all formulas
(including main theorems) are specified as lemmas.
Example 2. We can express over the protocol from
Example 1 that the Chain action for a given id is always
raised at most once for a given value x of the hash chain
with the following no replay lemma:

∀ id, x, i, j. Chain(id, x)@i & Chain(id, x)@j ⇒ i = j

Looking ahead, this property holds trivially by the fact
that the hash chain for a specific id is in some sense
strictly growing. There is, however, no way to express
such a property given the existing predicates of Tamarin’s
logic. Using the dedicated K fact that models the attacker
knowledge, we could also express that the attacker can
only know the last element of the chain, and not any hash
chain value computed before that:

∀ id, x, i. Chain(id, x)@i ⇒ ¬(∃ j. K(x)@j)

Constraint solving. To prove or disprove a formula
for a protocol, Tamarin essentially solves a constraint
solving problem: the rules generate constraints on the
possible executions, and the formula is negated and
converted into a set of logical constraints. Tamarin’s
algorithm applies sound and complete constraint solving
rules to refine, simplify, or case-split such constraint
systems. If Tamarin can find a solution for the constraint
system, this constitutes a counterexample to the formula;
if it can establish that no solution exists, then this
constitutes a proof that the property holds.
Example 3. Consider the formula

∀ id, x, y, i, j. Chain(id, x)@i & Chain(id, y)@j
& y = h(x) ⇒ ¬(i = j)

Any potential counterexample to this formula would be
captured with the constraint system Γ = [Chain(id, x)@i∧
Chain(id, y)@j ∧ y = h(x) ∧ i = j]. Using its set of
constraint solving rules, Tamarin would then prove the

Γ s = t

Γσ1 | . . . | Γσn
if CSU (s = t) = {σ1, . . . , σn}

Figure 1: The S≈ rule

formula by deriving a contradiction from this constraint
system, or by finding a counterexample.

We provide in Fig. 1 the rule S≈[5] as an example
of a constraint solving rule. It specifies that given Γ
and an equation, we can try to derive a contradiction
by exploring all the new constraints obtained when
considering the possible ways to solve this equation.
This corresponds to applying each substitution from the
CSU to Γ and then consider the disjunction of the new
constraints.
Example 4. We have the most general set of unifiers
CSU (h(x) = y) = {σ : y 7→ h(x)}, where in this
particular case there is only a single possibility. From
Γ of Example 3, a S≈ application over y = h(x) then
yields Γ1 = [Chain(id, x)@i ∧ Chain(id, h(x))@j ∧ i = j].
Using other rules that we do not detail here, we could then
deduce, from the fact that i = j and that the given system
never allows raising Chain twice at the same timepoint,
that we need to have x = h(x), which instantly leads to a
contradiction, as CSU (x = h(x)) = ∅.

This constraint solving problem is in general unde-
cidable. In practice, Tamarin relies on a set of heuristics
to decide which of the applicable constraint solving
rules should be applied to a given constraint system.
If Tamarin terminates, it explored all the possibilities
and either yields an attack or a proof. When the analysis
fails to terminate using the default heuristics, users can
either use Tamarin’s interactive mode to try to perform
the proof themselves, declare intermediate lemmas that
can be reused for later proofs, or define so-called oracles
that can programmatically override the built-in heuristics
where needed.

3. Subterm-based proof techniques

In this section, we formally describe our two main
extensions to Tamarin:

• the addition of a subterm ordering and related proof
techniques in Section 3.1, and

• a precise model for natural numbers, for which we
reuse and build upon the subterm ordering and
provide specialized proof strategies in Section 3.2.

This allows us to provide two new proof techniques:
• the Fresh Ordering rule in Section 3.3, based on

the assumption that a random value cannot be used
inside a term before it was created;

• the Monotonicity rule in Section 3.4, which relies on
detecting that some facts are manipulating terms
that are always increasing w.r.t. to the subterm
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ordering, which allows introducing a correlation be-
tween the timepoint ordering and subterm ordering
exists.

3.1. Subterms

Our goal is to introduce a subterm predicate that
captures a dependency relation on terms. Intuitively, if
x is a subterm of t, then x is needed to compute t. To be
amenable to automated reasoning, such a relation must
be a strict partial order and notably satisfy transitivity.
A first intuitive definition for this subterm relation is the
syntactic subterm relation:
Definition 1 (Syntactic subterm). ⊏synt is the mini-
mal transitive closure of {ti ⊏synt f(. . . , ti, . . . ) | f ∈
functions, ti ∈ terms}

It is, however, more difficult to define a meaningful
subterm relation when dealing with an equational theory
E. Morally, it makes sense that if two terms are equivalent
modulo E, they can be exchanged in a subterm predicate.
This intuition is formally captured by the consistency
notion.
Definition 2 (Consistent relation). We say that ⊏x is
consistent modulo E if for all terms s, s′, t, t′, we have:

(s =E s′ ∧ t =E t′) ⇒ ((s ⊏x t) ⇔ (s′ ⊏x t′))

This property is not satisfied by ⊏synt as we have
x ++ y ⊏synt x ++ y ++ z but not x ++ y ⊏synt y ++ z ++ x.
Cancellative function symbols also add a layer of com-
plexity. Exclusive-or is a good example of a cancellative
function: x ⊏synt x ⊕ x holds while x ⊏synt 0 does not
hold, even though we have that x ⊕ x =E 0.

Once a consistent relation has been found, there
is the need for a constraint solving strategy over the
corresponding predicate. Tamarin often uses variables
as placeholders for arbitrary terms in order to reason
symbolically. To deal with variables, we would ideally
want to use a similar strategy as for equations. There,
recall that we find the most general set of unifiers
and substitute all variables with them. However, the
set of most general unifiers for subterms s ⊏ t can
be infinite, h(x) ⊏ y has for example the unifiers
y 7→ g(h(x)) , y 7→ g(g(h(x))) , . . . , y 7→ gn(h(x)),
and we will have to come up with a dedicated proof
technique.

We now provide in the following the definition of a
consistent subterm relation for the equational theories
supported by Tamarin, after which we detail a constraint
solving algorithm for subterms.

Equational theory. In Tamarin, E is internally
divided into two parts: AC, the Associative and Commu-
tative part and R, a user-defined convergent rewriting
system. For AC, we define ⊏AC as follows:
Definition 3 (AC-subterm).
s ⊏AC t := ∃ s′, t′. (s′ =AC s) ∧ (t′ =AC t) ∧ (s′ ⊏synt t′)

This works well for AC as it is not cancellative.
However, if we define ⊏R,AC similarly, we get x ⊏R,AC 0
because 0 can be expanded to the equivalent term x ⊕ x.
Luckily, the convergence of the rewriting system R
provides a unique (up to AC) normal form for each
term, e.g., x ⊕ x ↓R,AC= 0. With this normal form, we
can define ⊏R,AC in a one-way fashion:
Definition 4 (R,AC-subterm).
s ⊏R,AC t := (s ↓R,AC) ⊏AC (t ↓R,AC)

With this definition, we trivially obtain that ⊏R,AC

is a consistent relation modulo the equational theory
R, AC:
Lemma 1. ⊏R,AC is R, AC consistent.

As the equational theories supported by Tamarin
are of the form R, AC, the ⊏R,AC definition is thus a
suitable subterm relation for our purpose in Tamarin,
and we choose it as our interpretation of ⊏. In particular,
in the remainder of this paper, we will often write ⊏ as
a shorthand for the chosen the subterm relation ⊏R,AC .

Constraint Solving and ⊏R,AC . In the proof
search, Tamarin will now produce constraints of the form
t ⊏ t′, for two terms t, t′ that may contain variables. To
ensure the validity of a subterm predicate in Tamarin’s
constraint system, we follow a proof strategy with three
main points (simplified):

1) Deconstruct the right side of the subterms until we
only have variables. I.e., at the end, all subterms
are of the form s ⊏ x where x is a variable. For
example, the solving algorithm replaces x ⊏ h(y)
with x ⊏ y ∨ x = y.

2) Check that we do not have loops of the form x ⊏
y ∧ y ⊏ x or h(x) ⊏ x, i.e., the transitive closure of
⊏ forms a directed acyclic graph.

3) At the end, for each subterm s ⊏ x, we apply the
substitution x 7→ fun(s) where fun is a fresh function
symbol. This is done implicitly.

This algorithm will either derive a contradiction or
provide a valid way to instantiate the constraint. The first
solving step is formally captured in the rule RECURSE
of Fig. 2, where we specify that given a constraint con-
taining t ⊏ f(t1, . . . , tn), we may introduce a disjunction
of constraints that either say that t = f(t1, . . . , tn) or
that t is a subterm of one of the ti. This rule does not
hold if f is an Associative Commutative function symbol
(as x ⊏ a ++ (b ++ c) can for instance be satisfied by
x ⊏ a ++ c), nor when f is reducible. The second solving
step where we check for loops is formally described in
the rule CHAIN of Fig. 2, where we write a mod n to
denote the modulo operation for relating xn and t0.

If there is no equational theory, these steps ensure
that all subterm constraints are met, as s ⊏ fun(s)
holds trivially under all substitutions. For AC, we can
adapt the RECURSE rule as seen in Fig. 3. However,
for arbitrary rewriting rules, we cannot do this kind of
recursion. For example, x ⊏ x ⊕ y is not equivalent to
(x = x) ∨ (x ⊏ x) ∨ (x = y) ∨ (x ⊏ y) which would be
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RECURSE:
t ⊏ f(t1, . . . , tn)

t = t1 | t ⊏ t1 | · · · | t = tn | t ⊏ tn
I

if f is not AC and not a reducible operator

CHAIN:
t0 ⊏ x0 · · · tn ⊏ xn

⊥
I

• if xi are variables of sort msg, and
• xi is syntactically in t(i+1) mod (n+1) and not below a

reducible operator

Figure 2: The recurse rule deconstructs the right side of
a subterm predicate into a disjunction of equalities and
smaller subterms. The chain rule detects loops in the
subterm relation and enables deriving a contradiction.
The I denotes insertion into the constraint system and is
added here for consistency with the extended version [29].

trivially true, independent of y. To avoid this problem, we
explicitly exclude reducible operators from the RECURSE
rule, which are the function symbols that are at the
top of left sides of rewriting rules. E.g., for the rule
fst(<x, y>) →R,AC x we have that fst is reducible, but
the pair function ⟨, ⟩ is not.

In conclusion, the strategy is: recursing on irreducible
operators and hoping that we do not end up with a
reducible operator at the end. If that happens, the result
is that we can neither prove nor disprove this claim, but
we observe that reducible operators are quite rare in
protocols where subterms make sense, e.g., we could not
find a sensible meaning of subterms for XOR. The most
frequent usage is for hashes h, key derivation functions
kdf , pairs ⟨, ⟩, and multisets ++, which are all irreducible.

Finally, subterms can also occur in negated form in
a logical constraint. We recurse similarly on them, such
that we end up with a variable on the right-hand side. To
automatically derive a contradiction from those negated
subterms, we add the rule NEG in Fig. 3. It inserts two
new constraints that rule out the contradictory case of
¬(s ⊏ r) ∧ (s ⊏ r). If we now (implicitly) apply the
substitution x 7→ fun(s) for each subterm s ⊏ x at the
end, we know that the negative subterms constraints
are not violated. The soundness and completeness of the
rules are proved in the extended version [29].

3.2. Refinements for Natural Numbers

We now turn to our extension for natural numbers.
Two kinds of numbers are used in protocols: some are
used as nonces or encryption keys, while the others are
smaller values typically used for counters. From a security
analysis point of view, they have two very different
sets of properties: nonces and keys cannot be guessed

AC-RECURSE:
t ⊏ t1 ++ · · · ++ tn

∃x. t ++ x = t1 ++ · · · ++ tn | t ⊏ t1 | · · · | t ⊏ tn
I

• where x is a new variable,
• ++ is an ac-operator and neither reducible nor the

addition from natural numbers, and
• there is no ti with ++as top operator (flatness)

NEG:
¬s ⊏ r t ⊏ r

¬s ⊏ t s ̸= t
I

Figure 3: AC-RECURSE and NEG. AC-RECURSE
works similarly to RECURSE while the existential quan-
tification ensures that cases like t = t4 + t1 are captured.
Additionally note, that we require flatness (ti don’t have
+ as uppermost operator) as a performance optimization
to avoid adding more existential quantifications than
necessary. The NEG rule deals with negative subterms.

by the attacker, and we often do not need to consider
the underlying algebraic properties of those integers. In
contrast, for counters, every number can be guessed by
the attacker with non-negligible probability and we do
need to consider the algebraic properties of the addition.

The first kind is traditionally modeled as fresh ran-
dom values as we have illustrated before. In the following,
we provide an efficient model for small integer values. We
prove the correctness of our encoding in the extended
version [29].

Modeling decisions. There are two main styles to
define numbers: as in Peano arithmetic with a 1 and a
successor function, or as in Presburger arithmetic with
a 1 and an addition of two numbers. In contrast to
ProVerif where numbers are implemented in Peano style
[15], we use Tamarin’s ability to cope with associative-
commutative operators to implement the + of Presburger
arithmetic. This has the substantial advantage that we
can sum arbitrary numbers n + m without having to
resort to implementing this with loops that might cause
non-termination, e.g., by applying the successor function
m times in a loop.

Recall that the multiset operator ++ is commutative
n++m = m++n and associative (n++m)++o = n++(m++o);
this is why many existing Tamarin models use the
multiset operator ++ in combination with a public symbol
for ’1’ to model counters in Presburger arithmetic [3],
[2], [30], [31]. For example, a 3 would be represented
as ’1’++’1’++’1’, i.e., the number of ’1’s in the multiset
indicates the number represented. A zero cannot be
represented as we otherwise would need to switch to the
theory ACU, where the U stands for unit (n ++ 0 = n),
which is not supported by Tamarin. In practice, there is
usually no need for an explicit zero as counters can also
start at one without impacting the security analysis.
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The problem of the existing modelings is that the
multiset operator can be used with terms of any sort, i.e.,
there can be other elements than ’1’ inside the multiset,
potentially including secret values. This substantially
complicates the proof search which typically significantly
slows down the verification of these models. One of the
sources of complexity is that the attacker is required
to construct each number individually and that it also
tries to extract information from multisets that represent
numbers. In practice, these two behaviors make no sense
as the attacker can directly guess these small numbers. A
solution to this is to explicitly define numbers as public
values. To this end, we introduce a new sort nat that
precisely captures the natural numbers. The two only
ways to construct a term of sort nat are 1 : nat and the
custom AC-operator + : natÖnat → nat. That implies
that the attacker can never extract useful information
from a nat and never needs to prove that they can
construct a nat. We will see later that this leads to
substantial speedups and aids termination of a protocol’s
analysis.

However, these speedups come at a cost as with a
strengthened type system, we may hide some type flaw
attacks. For example, consider a protocol with an oracle
that is supposed to sign small counters but accidentally
also signs nonces as they are both implemented as 64bit
integers. If we model this oracle with nat in Tamarin,
we do not capture the bug. If the second part of the
protocol is a challenge which asks the attacker to sign
nonces, we have an attack in the real world but not in
the symbolic model. To capture this attack, the model
would need to go back to using the construction with
the multiset operator while avoiding the sort nat. This
boils down to the general trade-off between the level of
automation and the accuracy of the model. In general,
we are guaranteed to model type flaw attacks if we do
not assume messages received from the network to have
any specific type. Apart from that, we can use the sort
nat arbitrarily (e.g., in local state or when sending to the
network) which still yields automation improvements.

Less-than relation. When using the subterm
relation as a less-than ordering over natural numbers, we
observe that the following holds if m and n are nat:

1) It is a total ordering: (n ⊏ m) ∨ (n = m) ∨ (m ⊏ n).
This is used for negating a less-than equation.

2) n ⊏ m can be rewritten to the equation ∃x. n + x =
m. This is used at the end of the constraint solving
algorithm for subterms instead of using the fresh
function symbol fun for the substitution x 7→ fun(s)
(the symbol fun of the generic constraint solving
algorithm cannot be used for numbers as it would
violate the type constraints).

3) It is discrete, which means that we can sometimes
extract equations, e.g., from (m ⊏ n)∧(n ⊏ m+1+1)
follows that n = m+1. We determine these equations
with an efficient UTVPI-algorithm (short for Unit
Two Variable Per Inequality). This algorithm builds
a graph out of the constraints where variables are

FRESH-ORDER:
i : f j : g i ̸= j

i < j
I

where j : g denotes that rule g occurs at timepoint j, and
• f has a premise Fr(s),
• g has a premise fact with the term t,
• s is syntactically in t but not below a reducible operator

Figure 4: The basic fresh order rule

nodes in the graph and (directed) edges are the
orderings between them. After construction, the
graph is checked for zero-weight cycles with an
adaption of the Bellman-Ford algorithm. For more
details, see [32].

We stress that the two variable restriction for the
UTVPI algorithm does not imply a restriction of our
constraint solving algorithm: the UTVPI is only used
as an optimization, and if it cannot be applied, we fall
back to using the more general approach of using the
formulation ∃x. n + x = m.

3.3. Fresh Ordering

The idea of the Fresh ordering rule is to derive
a temporal ordering constraint between creation and
usage of fresh variables: it is intuitively clear that a
random variable cannot be used before it is created.
This proof strategy was already used in Scyther [18]
but was not adapted in Tamarin because of its support
for equational theories: with equations, it is not easy to
determine whether a fresh value is inside a term, e.g.,
x ⊏ x ⊕ y does not hold if y 7→ x. However, if there
are no reducible operators between the two terms, we
can show that we can safely add the rule in Fig. 4. The
rule formally specifies that if we have a rule g occurring
at timepoint j, denoted j : g, and if there is a fresh
value s that appears syntactically in g (and not below
a reducible operator), then we know that j must be
after the timepoint i of the rule f that produced s in
the premise Fr(s). We describe below informally two
variants of this first rule, and provide the full rule as well
as soundness and completeness proofs in the extended
version [29].

“Subterm” improvement. This rule takes its full
meaning when combined with the subterm predicate,
which precisely captures the fact that a value is needed
to build some term. Previously, we required that s is
syntactically in the term t and not below a reducible
operator. However, the situation can be that we have
the predicate s ⊏ t while s is not (yet) syntactically in t.
Then, we can conclude from the subterm predicate that
s will be eventually in t (after some constraint solving
steps) and already assume that t “uses” s. Because of
transitivity of ⊏, we can also use chains s ⊏ t1 . . . tn ⊏ t
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to ensure that t “uses” s and insert the corresponding
timepoint ordering.

“Secret path” improvement. We can also refine
the previous rule in the cases where a fresh value s is
secretly given to a second rule at time i after the Fresh
rule. In this case, we know that no other rule before i
can use s because it is not known to them. I.e., all other
occurrences of s have to be after i. This can be extended
from a single further rule to a path of rules where s is
passed secretly.

3.4. Monotonicity

We now provide ways to automatically detect the
monotonous behaviors appearing inside a protocol and
how to use those behaviors in the constraint solving. To
detect facts that may for instance model a counter, we
rely on the existing notion of injective facts in Tamarin,
which are instances of facts that are guaranteed to not
co-exist in a trace. Knowing about this kind of injectivity
currently enables timepoint ordering simplifications.
Example 5. In Example 1 the State fact is injective,
and we know that two instances of the State fact with the
same ∼id cannot both exist at the same time. Tamarin
uses this information to derive contradictions, as it can
notably conclude that if a State(∼id, x) fact is produced
at timepoint i and consumed at timepoint j, there cannot
exist another State(∼id, y) in between i and j.

We can improve the reasoning over those facts by
detecting if they imply monotonous behaviors. To do
so, we must inspect the contents of these injective facts
that may be seen in this case as storage cell used to
store a set of values. For instance, we can syntactically
see that in Example 1 the variable x models a storage
cell containing a strictly increasing sequence of keys.
This means that we can correlate bigger keys with
later time points of fact instances representing the same
storage cell. We thus extend the injective fact reasoning
with techniques associated to monotonicity. All in all,
we determine five special cases for contents of storage
cells: Strictly Increasing, Strictly Decreasing, Increasing,
Decreasing and Constant.

In the following, we first show how to better detect
injective facts, which makes our technique more broadly
applicable, and how the monotonous behaviors can be
inferred over such facts. We then show how this extra
information can be used inside the constraint solving.
The soundness and completeness proofs of our approach
can be found in the extended version [29].

Injective monotonous facts. Injective facts were
previously detected by ensuring that there exists a fresh
value id that is only used as the first argument of a fact
S, there is a single rule that produce the S fact from
a Fr(∼id) fact, and otherwise there are only rules that
consume a single S fact and can then produce it. We
provide a more general detection, that notably allows
producing multiple injective facts at the same time. We

improve the detection of injective facts in general and
now detect this behavior with the following rule-set:

Definition 5. A fact Fact is detected as injective if

1) it is linear and not persistent
2) for each conclusion of Fact(id, . . . ) of each rule,

there is no other conclusion Fact(id, . . . ) with the
same first term and

a) either there is a premise Fr(id)
b) or there is exactly one premise Fact(id, . . . )

The set of injective facts gives us a set of potential
storage cells over which we can detect monotonicity
properties. In general, we note that an injective fact can
be used to store multiple values, and be, e.g., of the form
Store(id, v1, v2, v3), where we can see each value vi as an
independent storage cell. We may also encounter cases
where the previous is written using a tuple as follows
Store(id, v1, ⟨v2, v3⟩). We also detect such usages, and
do see v2 and v3 as independent storage cells. For each
such storage cell, we detect by a syntactic analysis over
the rules if the cell is:

• constant, when every rule produces the same value
it consumed for this cell;

• strictly increasing, when for any rule the value in
the premise of the cell is a syntactic subterm (and
not below a reducible operator) of the one in the
conclusion;

• decreasing and (non-strict) increasing/decreasing
cells by combinations or inversions of the above.

Monotonicity properties. We now consider the
case where a monotonous storage cell (corresponding
to an injective fact) is used to store the term s at
timepoint i and the term t at timepoint j. Then, the
following simplifications can be performed for constant
and increasing storage cells:

• If the cell is constant:
(1) insert s = t

• If the cell is strictly increasing:
(2) if s = t, then insert i = j
(3) if s ⊏ t, then insert i < j
(4) if i < j or j < i, then insert s ̸= t
(5) if ¬s ⊏ t and s ̸= t, then insert j < i

For (3) and (5) we do not require s ⊏ t to be an
explicit predicate in the constraint system but also apply
the rule if s ⊏ t is trivially true, e.g., for syntactic
inclusion. Note that (5) holds as t ⊏ s holds because of
totality within the increasing injective fact. Interestingly,
this totality (s ⊏ t) ∨ (s = t) ∨ (t ⊏ s) does not hold in
general, but holds here because s and t are used in the
same monotonic storage cell which yield a total ordering
on the possible contents of the storage cell. If the cell
is non-strictly increasing, we can only use rules (3) and
(5).
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Protocol Properties LoC H. Lemmas Runtime (s) Oracle
New models

TreeKEM[24] Forward Secrecy 389 4 8 yes
S/Key [25] Authentication 101 1 1 no
Tesla Scheme 2[26] Authentication, Secrecy 286 5 8 no

Previous models
Old New Old New Old New

WPA2 [3] Secrecy, Authentication 2446 74 73 5189 559 yes yes
5G-AKA[2] Secrecy, Authentication 978 7 6 467 131 yes yes
YubiKey [30] Authentication, Replay-Resistance 134 4 3 19 1 no no
PKCS#11 [31] Key Generation Properties 301 4 0 74 10 yes no
CH’07 RFID [7] Unlinkability 92 0 0 3197 97 no no

LoC : lines of code (approximate complexity measure)
H. lemmas: helper lemmas automatically proved by Tamarin, but manually added to help prove the target property
Oracle: whether an oracle was needed to help guide the proof search, “no” means more automation

TABLE 1: Benchmark overview: new models and improvements for previous models

Runtime in seconds
Original Models Models using dedicated Subterms and Natural Numbers modelsProtocol

Original Fresh Order Basic Fresh Order Monotonicity Monotonicity + Fresh Order
TreeKEM[24] - - ∞ 8 ∞ 8
S/Key [25] - - 1 1 1 1
Tesla Scheme 2[26] - - 8 11 6 8
WPA2 [3] 5189 5750 5142 5142 386 559
5G-AKA[2] 480 467 90 124 108 131
YubiKey [30] 19 21 1 1 1 1
PKCS#11 [31] 74 79 36 24 5 10
CH’07 RFID [7] 3197 96 3197 96 2721 97

We compare the running time between the original models (when they exist), and the models modified to use subterms. For
the original models, we can compare the plain model only with the Fresh Ordering as it’s our only extension that can speed-up models
which are not using the subterm operator. On the right side, we modify the models and use the Fresh Order and Monotonicity techniques
in all combinations. We highlight some of the most significant changes implied by the individual features.

TABLE 2: Benchmark: impact of individual extensions on new and old models

4. Case Studies

In this section, we demonstrate the usefulness of our
Tamarin extensions. In particular:

1) We improve existing analyses by reducing their
verification time and removing the need for helper
lemmas or oracles. Notably, we reduce the proving
time from hours to minutes on a model of WPA2.
Furthermore, we have improvements on models of
5G-AKA, YubiKey, PKCS#11, and CH’07.

2) We provide novel case studies of the TreeKEM,
S/Key and Tesla Scheme 2 protocols. Here, we
highlight the model of TreeKEM which is especially
complex due to its tree-based data structure.

We give the high-level results in Section 4.1. We then
discuss some details of improved existing models in
Section 4.2, before turning to the details of the three
novel case studies in Section 4.3, 4.4, and 4.5.

4.1. Overview

We describe the considered models in Table 1, in-
cluding both older models that we improve on and new
models that we developed from scratch. For each model,
we summarize the security properties verified, the total
running time of the model, how many helper lemmas
needed to be specified by hand, and whether the model

needs an additional handwritten oracle to help guide
the proof. We used 3 threads for each run on a server
with a 64 cores Intel(R) Xeon(R) CPU E5-4650L 0 @
2.60GHz with 750GB of RAM. This scaling was mainly
useful for parallelizing multiple case studies - one can
also run all case studies sequentially on a normal 4-core
machine and 16GB of RAM. We round to the nearest
full second, except for times below 1 second, which we
always round to 1. For previously existing models, we
compare our patched Tamarin version to the most recent
Tamarin 1.6, with the notable highlights of:

• a 30x speed-up on the CH’07 RFID protocol, a 24x
speed-up on the YubiKey model and, 9x, 8x and 4x
speed-up on PKCS, WPA2, and 5G-AKA,

• removing the need for an oracle in PKCS, and
• reducing the number of helper lemmas in all cases.
To evaluate the relative impact of each of our in-

dividual extensions, we also perform a more in-depth
benchmark. In particular, we consider whether the fresh
order rule is useful even outside the subterm context,
whether dedicated natural number and subterm models
without additional proof technique are already useful,
and what happens when we add to the dedicated models
either the Fresh Ordering rule, the Monotonicity reason-
ings, or both. We summarize this benchmark in Table 2.
Overall, we find that

• just having a dedicated natural number model and
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a subterm predicate is already useful and speeds
up the 5G-AKA, YubiKey and PKCS#11 case
studies (recall that it reduces the number of possible
unifiers), and also enables our three new case studies;

• the Fresh Ordering rule very strongly impacts
TreeKEM (without it, the verification does not
terminate) and a 30x speedup for CH’07 RFID;

• the monotonicity reasonings cause a huge speed-up
for WPA2 and PKCS#11.

We observe that adding only the fresh order or the
monotonicity features may actually cause a slowdown
compared to Tamarin 1.6, as the time they spend trying
to derive contradictions may be wasted if no contradiction
is found. However, we always see a significant speed-up
compared to the original model when we combine all our
extensions. Note that our new proof techniques never
increase the proof size (not shown in the tables).

Implementation. The implementation of the sub-
term predicate, the natural number modeling and of all
their associated proof techniques adds around 1400 lines
of Haskell code to Tamarin.

The Unicode symbol ⊏ or alternatively << can be
used to state a subterm predicate between two terms in
a formula. Even if no subterm predicate is used inside
the model, Tamarin will still use the monotonicity and
the fresh ordering techniques.

As discussed previously, there are some cases where
the subterm reasoning will fail in the presence of can-
cellation operators. This introduces a new behavior for
Tamarin: previously, it would always give a positive or
a negative answer when it terminated; it may now fail
to conclude in some branches of the proof search. In
our setting, this does not have strong consequences: for
attack finding, one can continue to explore the other
branches and for proving, one can try to do the proof
without any of the subterm optimizations.

If users now want to use numbers in Tamarin, they
have to include the builtin natural-numbers. Variables n
can be typed with sort nat in two ways: n:nat or %n. The
1 must be typed to avoid clashes with the one from Diffie-
Hellman, i.e., we use 1:nat or %1 for natural numbers.
Finally, the addition operator is denoted by %+ to avoid
clashes with the multiset operator ++ which is denoted
+ in Tamarin.

4.2. Speed-ups of Existing Models

WPA2. WiFi Protected Access 2 is a protocol
used for securing wireless data transmission. Since 2018,
there is a newer protocol WPA3 that provides additional
security features, although it is to be expected that
WPA2 will still used in many devices in the coming years.
Because of its wide usage, WPA2 has been extensively
studied, revealing multiple attacks. Among the most
severe is the krack attack [33], which enabled decryption
of the internet traffic of other devices if the attacker is
in range of the WiFi.

[3] provides a full formal model of WPA2 in Tamarin.
They formally reproduce the Krack attack and provide
proofs of secrecy and authentication for a fixed version of
WPA2. They additionally developed an external tool ut-
tamarin which they use instead of an oracle to automate
most of the proofs. However, four proofs could not be
automated this way and were provided as manual proofs.
Overall, the model has over 2400 lines and takes 1.5
hours to prove all automated properties.

Analyzing WPA2 is challenging because it requires
modeling counters, which protect against replay
attacks. The authors use the multiset encoding
of numbers described in Section 3.2. To express
that the counter n is smaller than m, they use
an existential quantification ∃x. n ++ x = m.
This is, among other things, used in the lemma
gtk encryption nonces increase strictly over time
which is exactly monotonicity of a counter. Unfortunately,
our automatic detection of strictly increasing injective
facts does not apply for this lemma because its injectivity
relies on more values than the first identifier. Still,
proving the lemma gets a performance improvement of
60% due to the UTVPI computation when replacing the
existential quantification by the subterm operator.

Another highlight of our improvements is the longest
lemma authenticator ptk nonce pair is unique which
ensures that there are no two states with the same
counter - taking 1.4 hours to prove. With the mono-
tonicity proof technique, we can not only prove this
lemma instantly, but can also remove its implied lemma
ptk nonce pair is unique completely without any im-
pact on other lemmas and theorems. All in all, we reduce
the proving time of the model from 1.5 hours to 9
minutes. We also remove the dependency for ut-tamarin
and automate the four manual proofs with an oracle.
This improves the overall usability and maintainability
of the model as it only uses tools included and maintained
within Tamarin.

5G-AKA. Billions of users connect to the internet
via a mobile device using the cellular network provided
by multiple carriers. To authenticate with a SIM-Card to
the home carrier, an Authentication and Key Agreement
(AKA) protocol is used. The latest such protocol is called
5G-AKA which is part of the 5G protocol standardized
by the 3GPP, the successor of 4G/LTE. It provides
authentication and secrecy for the following messages
encrypted with the key agreed upon.

In [2], the authors provide a full analysis of 5G-
AKA within 1500 lines of Tamarin code. Proving all
124 lemmas takes around 5 hours and needs oracles
of an additional 1000 lines of Python code. Properties
proven include especially authentication, confidentiality
and privacy in a multitude of different versions including
binding vs. non-binding channels. During the analysis,
the authors find several weaknesses in the protocol and
recommend fixes.

The main challenges in modeling 5G-AKA are the
incrementing sequence numbers that persist over multiple
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sessions. The authors introduce a special monotonicity
lemma which is crucial for their proof, and is the largest
lemma. Unfortunately, we cannot automatically detect
this monotonicity with our new proof technique, as it is
quite specialized. However, our extensions still reducing
the proof steps needed for this lemma from over 2100
steps to under 400. Additionally, we drastically reduced
the proof steps needed for lemmas connected to injective
agreement and two invariant lemmas became obsolete
because of the different modeling with natural numbers.
Here, we focus on the main version of the protocol,
comprising 15 of the total 124 lemmas and which takes 8
minutes to prove. Using our extensions, we can cut down
this time to less than two minutes.

YubiKey. The YubiKey is a USB token that enables
second factor authentication. After the registration of
the public key of the YubiKey to a web server, every
login of the user onto the web server will require the
YubiKey to sign a challenge sent by the server along
with a counter stored inside the YubiKey. The YubiKey
mechanism was first studied with Tamarin in [30], where
the counter was modelled using a multiset, and one of the
key lemmas required the monotonicity of the counters.
We migrated the model to our natural number modeling,
which reduces the proof time from 20 seconds to 1 second.

PKCS#11. We updated the PKCS#11 key wrap-
ping API model from the recent Tamarin analysis
from [31]. The API heavily relies on a notion of integer
to attach levels to secret keys, where a key of one level
can only be used to encrypt keys with higher levels.
The original model required the authors of [31] to write
dedicated oracles to help the verification, which then ran
in 74 seconds. For this model, each of our optimizations
leads to a speed-up, until we reach a 9 second verification
time, and we no longer need an oracle. We thus removed
the need for writing an oracle, which can be a long and
tedious step in a Tamarin analysis.

CH’07. The CH’07 [34] scheme is an RFID based
tag authentication protocol, previously analyzed with
Tamarin in [7]. It relies on a challenge-response mecha-
nism and notably uses the xor operation, and one of its
main goals is to guarantee tag unlinkability. This example
offer an interesting variant from the previous examples:
first, it does not use any counter, hash chain or similar
constructs; second, it involves proving observational
equivalence. On this example, the fresh order rule has a
strong impact as it speeds up the observational equiva-
lence proof from almost an hour to under 2 minutes.

4.3. TreeKEM

In 2018, an internet engineering task force on mes-
saging layer security (IETF-MLS) was founded to stan-
dardize the key exchange for messaging apps. End-to-
end encrypted messaging between two parties is already
standard for most messengers. However, in a group
setting, the currently employed protocols either lack
security or performance. This is what the MLS working

group aims to provide with a continuous group key
agreement (CGKA) protocol based on the TreeKEM
protocol [24]. A CGKA is a protocol to derive a group
key in an updatable way, i.e., if group members join or
leave the group or just want to renew the secrecy of the
group key. This update mechanism aims to achieve two
main properties:

1) Forward secrecy states that if the attacker compro-
mises a key at a certain point in time, the previous
keys are still secret.

2) Post compromise secrecy (PCS) states that if the
attacker compromises a key, participants can heal
the key when the attacker is temporarily passive.
That is, if the participants update the key, then the
new key is again secret.

The main complexity of TreeKEM arises from the use of
a distributed tree structure. A private/public key pair
is saved inside each node of a binary tree. Each leaf of
the tree corresponds to a participant in the group, and
each participant knows exactly the secret keys on the
path from their leaf to the root. This implies that the
secret key on a leaf is only known by the corresponding
participant while the key at the root node is known by
all participants. This root key is then the one used to
derive a shared group key.

If a participant wishes to update their leaf key, they
will update all the secrets on the path from their leaf to
the root key, notably updating the root key, and sending
the information needed for the updates to the other
members by using the public key of each node. After an
update, the new shared group key is computed through
the application of a key derivation over both the previous
group key and the new root key.

Modeling and analyzing the TreeKEM protocol raises
two challenges:

• a participant needs to store a list of key pairs of an
arbitrary size, and be able to go through all of them
to update it;

• the group key is produced through an infinitely
growing hash chain.

We address the first challenge by using a Tamarin
model of ordered lists that relies on our implementation
of natural numbers, and the second one by using the
subterm predicate.

Our model. From the version proposed in [24], we
take the following parts to model a single group with an
unbounded number of participants:

1) a rule to create a group with one participant,
2) rules for a new participant to join a group,
3) rules for a participant to update their secrets, and
4) a theorem proving forward secrecy.

The natural numbers allowed us efficiently model the
storage of the path of secrets from the leaf to the root
of the tree as an ordered list. Tamarin does not directly
support this data structure, so it has to be built out
of smaller primitives. Without our extension, a natural
choice would be to model it with pairs, e.g., the list
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[a, b, c, d] would be represented as ⟨a, ⟨b, ⟨c, d⟩⟩⟩. However,
this has the disadvantage that elements at the end or
in the middle of the list can only be accessed by a loop
which deconstructs the structure. A smarter way is to use
a multiset with indices, i.e., ⟨1, a⟩++⟨2, b⟩++⟨3, c⟩++⟨4, d⟩.
There, we can access any element by pattern matching on
it with the index n: ⟨n, elem⟩ ++ rest and iterate trough
the list by incrementing n. With such a model of the
data structure, we were able to encode all the loops that
need to go through the list, e.g., to update the values,
in an efficient way.

Proving Forward Secrecy. We specify forward se-
crecy formally as follows: the group key gk of participant
id cannot be known by the attacker if no participant of
the group is compromised in a state where their group key
gk2 was a predecessor of gk. We write the corresponding
Tamarin lemma as:
Tamarin Lemma 1 (TreeKEM Forward Secrecy).

∀ id, gk, i. GroupKey(id, gk)@i
⇒ ¬∃ id2, gk2, j. ( Leak(id2, gk2)@j

& gk2 ⊏ gk)
⇒ ¬(∃ l. K(gk)@l)

Note that it does not make sense to refer to time-wise
constraints like ”if there was no compromise before, the
attacker will never know gk”. With that, it could be that
the attacker compromises a client in the future that did
not receive updates and is thus in an old state. Instead,
we use the group key to express the progress of a client.
As group keys are computed from old group keys with a
key derivation function gkNew = kdf (gkOld, rootSecret),
it is the case that gkOld ⊏ gkNew, even for arbitrarily
old group keys. This is an interesting setting where the
subterm predicate is not only a proof technique but
actually needed to specify the security property in some
intelligible and straightforward way.

When first trying to prove forward secrecy for
TreeKEM, Tamarin found a trace that contradicted
the security property. The attack came from the fact
that in the original specification, the first group key
is initialized with a public constant instead of a fresh
random variable, and as long as no update was performed
and only new group members were added, the protocol
would not provide forward secrecy. By comparing with
the current draft of the MLS standard, we saw that the
issue had already been discovered manually and fixed in
draft 10 of the MLS standard.2 After applying the fix,
we were able to prove the forward secrecy property. It
required writing four helper lemmas, which is relatively
low, and the proof runs in a few seconds.

Limitations. Note that we do not model deletion of
group members. Moreover, we only have a restricted join
operation that inserts new participants always on the
right side of the tree which yields non-balanced binary
trees. The most severe limitation of our protocol is that
we were not able to prove PCS. There are two challenges

2. https://github.com/mlswg/mls-protocol/pull/385

to a PCS proof for TreeKEM, that we are not sure how
to address yet, and consider out of scope of this paper:

• PCS relies on an invariant over the whole tree struc-
ture which is unfortunately distributed over arbitrar-
ily many clients. Expressing such an invariant over
a structure which is abstract and never explicitly
occurs inside a state is complex in Tamarin.

• In addition, TreeKEM clients in the same group can
be widely out of sync for many steps, which makes
it a challenge to express a meaningful notion of PCS
while accounting for the temporal dependencies.

4.4. S/Key

The S/Key protocol uses a hash chain to provide a
One Time Password (OTP) authentication scheme [25]
integrated into the Linux kernel. The user first generates
the hash chain hn(password), keeps all the iterations, and
provides only the first element hn(password) to the server
through a secure channel. Then, at step i, hn−i(password)
is given to the server which can check if the hash of the
given value matches its stored value and keep this hash
as the new stored value.

While it is one of the most classical OTP schemes,
it was never automatically analyzed before due to the
complexity of the arbitrary large – first increasing and
then decreasing – hash chain. This is a case for which
writing down the protocol is deceptively simple and only
takes a dozen of lines, yet the proof is involved. For
this protocol, we prove the authentication property that
specifies that the server will only accept a token for
which the user explicitly revealed a previous value. If
we denote by User(x) the action raised when a user is
using the value x from the chain to try to authenticate
(thus explicitly revealing it), and by Server(x) the action
raised by the server accepting a chain value, we prove
authentication for S/Key:
Tamarin Lemma 2 (S/Key Authentication).

∀ x, i. Server(x)@i ⇒
∃ y, j. User(y)@j & j < i & (x = y | y ⊏ x)

Similarly to the TreeKEM case, this illustrates how
the subterm predicate can help express complex security
properties. We prove the previous security property
(lifted to an unbounded number of sessions) in a few
seconds with one helper lemma.

4.5. TESLA Scheme 2

TESLA Scheme 2 [26] is a stream authentication
protocol. From a high-level point of view, it can be seen
as using the basic S/Key concept as a building block,
but turned into a full-fledged system where each part
of the hash chain authenticates a sequence of messages.
The expected security is the authenticity of each message
accepted by the server, which is expressed as:
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Tamarin Lemma 3 (Tesla Authentication).
∀ m, i. Accept(m)@i ⇒ ∃ j. Sent(m)@j & j < i

A first Tamarin model of it was proposed in 2012 [27],
as an example of things that Tamarin was not able to
prove. The reason for that is the complex construction
with an inverse hash chain which might skip an arbitrary
number of intermediate steps. With subterms, we were
able to express such a skip and write helper lemmas,
which especially expressed monotonicity and uniqueness.
Here, the subterms are only used as an intermediate proof
technique to prove a generic and subterm independent
property. We were able to prove authentication as well as
some additional secrecy requirements in about 5 seconds
with 5 helper lemmas.

5. Conclusions

We extend the Tamarin prover with a subterm
predicate and multiple associated proof techniques, as
well as a dedicated support for natural numbers. We
illustrate on multiple case studies how this improves the
automation and the scope of the tool, providing both
speed-ups of old models and novel case studies.

Our extensions have significant impact on our case
studies: our techniques can enable verification which had
not succeeded before (getting rid of non-termination in,
e.g., TreeKEM), removing the need for manually-specified
helper lemmas or oracles, and we observed a speed-up
factor of over 30x in one case (CH’07 RFID).

While our techniques were initially developed for
Tamarin, they appear to be rather generic and it should
be possible to, e.g., introduce a general subterm predicate
to ProVerif that can be used in lemmas and queries.
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