Oracle Simulation: a Technique for Protocol Composition with
Long Term Shared Secrets

Hubert Comon
LSV, CNRS & ENS Paris-Saclay &
Inria & Université Paris-Saclay

ABSTRACT

We provide a composition framework together with a variety of
composition theorems allowing to split the security proof of an un-
bounded number of sessions of a compound protocol into simpler
goals. While many proof techniques could be used to prove the sub-
goals, our model is particularly well suited to the Computationally
Complete Symbolic Attacker (CCSA) model.

We address both sequential and parallel composition, with state
passing and long term shared secrets between the protocols. We also
provide with tools to reduce multi-session security to single session
security, with respect to a stronger attacker. As a consequence,
our framework allows, for the first time, to perform proofs in the
CCSA model for an unbounded number of sessions.

To this end, we introduce the notion of O-simulation: a sim-
ulation by a machine that has access to an oracle O. Carefully
managing the access to long term secrets, we can reduce the secu-
rity of a composed protocol, for instance P||Q, to the security of P
(resp. Q), with respect to an attacker simulating Q (resp. P) using
an oracle O. As demonstrated by our case studies the oracle is most
of the time quite generic and simple.

These results yield simple formal proofs of composed protocols,
such as multiple sessions of key exchanges, together with multiple
sessions of protocols using the exchanged keys, even when all the
parts share long terms secrets (e.g. signing keys). We also provide
with a concrete application to the SSH protocol with (a modified)
forwarding agent, a complex case of long term shared secrets, which
we formally prove secure.

CCS CONCEPTS

« Security and privacy — Formal security models; Logic and veri-
fication.

KEYWORDS

formal methods; composition framework; computational model;
CCSA model; long term shared secrets

ACM Reference Format:
Hubert Comon, Charlie Jacomme, and Guillaume Scerri. 2020. Oracle Simula-
tion: a Technique for Protocol Composition with Long Term Shared Secrets.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417229

Charlie Jacomme
LSV, CNRS & ENS Paris-Saclay &
Inria & Université Paris-Saclay Inria

Guillaume Scerri
Université Versailles Saint-Quentin &

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS °20), November 9-13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3372297.3417229

1 INTRODUCTION

This paper is concerned with the security proofs of composed pro-
tocols. This topic has been widely studied in the last two decades.
For instance, Universal Composability (UC) and simulation based
reductions [3, 4, 14-16, 25] and other game-based composition
methods [9-11, 28] address this issue. While the former proceed in
a more bottom-up manner (from secure components in any envi-
ronment, construct secure complex protocols), the latter proceed
in a more top-down way: from the desired security of a complex
protocol, derive sufficient security properties of its components.
Such “top-down” proofs design allows more flexibility: the security
requirements for a component can be weaker in a given environ-
ment than in an arbitrary environment. The counterpart is the lack
of “universality”: the security of a component is suitable for some
environments only.

We follow the “top-down” approach. While we aim at designing
a general methodology, our target is the management of formal
security proofs in the Computationally Complete Symbolic Attacker
(CCSA) model [6]. As a side result of our work, we provide with
a way of proving the security of an arbitrary number of sessions
(that may depend on the security parameter) in the CCSA model.

When trying to (de-)compose security properties, the main diffi-
culty comes from the fact that different protocols may share some
secrets. This is typically the case for multiple sessions of the same
protocol, or for key exchange protocols, which result in establishing
a shared secret that will be later used in another protocol. Protocols
may also share long term secrets, for instance the same signing key
may be used for various authentication purposes. Another example
is the SSH protocol with the agent forwarding feature [32], which
we will consider later. The forwarding feature allows to obtain,
through previously established secure SSH connections, signatures
of fresh material required to establish new connections. It raises a
difficulty, as signatures with a long term secret key are sent over a
channel established using the same long term secret key.

As far as we know, the existing composition results that follow
the “top-down” approach cannot be used in situations where there
is both a “state passing”, as in key exchange protocols, and shared
long term secrets. For instance, in the nice framework of [10], the
same public key cannot be used by several protocols, a key point
for reducing security of multiple sessions to security of one session.

When decomposing the security of a composed protocol into the
security of its components, we would like to break a complex proof
into simpler proofs, while staying in the same proof framework.
This is also a difficulty since the attacker on a protocol component


https://doi.org/10.1145/3372297.3417229
https://doi.org/10.1145/3372297.3417229

might use the other components: we need a proof with respect to a
stronger attacker. In [10], such a strong attacker can be simulated
by a standard one, because there is no shared long term secret.

1.1 Our contributions

We provide with a composition framework that reduces the security
of a compound protocols to the security of its components. We allow
both state passing and shared long term secrets. We stay in the
same proof framework of the CCSA model.

The starting idea is simple: if we wish to prove the security of a
composed protocol P||Q, it is sufficient to prove the security of P
against an attacker that may simulate Q, maybe with the help of an
oracle. If 1 are the secrets shared by P and Q, this simulation has
to be independent of the distribution of . This is actually an idea
that is similar to the key-independence of [11].

Therefore, we first introduce the notion of O-simulation, in
which an oracle O holds the shared secrets: if Q is O-simulatable
and P is secure against an attacker that has access to O, then P||Q is
secure. Intuitively, O defines an interface through which the secrets
can be used (e.g. obtaining signatures of only well tagged messages).
O simulatable protocols conform to this interface.

We extend this basic block to arbitrary parallel and sequential
compositions, as well as replication of an unbounded number of
copies of the same protocol. In the latter case, the security of a
single copy of P against an attacker that has access to an oracle
allowing to simulate the other copies, requires to distinguish the
various copies of a same protocol. In the universal composability
framework, this kind of properties is ensured using explicit session
identifiers. We rather follow a line, similar to [26], in which the
session identifiers are implicit.

Our main composition Theorems are generic: the classical game
based setting can be used to prove the subgoals. They are also
specially well-suited for the CCSA model, which allows to complete
computational proofs of real life protocols [5, 18, 30], while only
relying on first order logic and cryptographic axioms. Many such
axioms can easily be generalized so as to be sound with respect to
an attacker that has access to oracles (we will see examples later).

A proof using such axioms is valid for an attacker who has
access to an environment, while abstracting all the details of the
environment and its interactions with the attacker. Moreover, as
our reductions from one session to multiple sessions are uniform,
we may now complete proofs in the CCSA model for a number of
session that is parameterized by the security parameter. This was a
limitation (and left as an open issue) in all previous CCSA papers.

We illustrate our composition results showing how to split the
security of any (multi-session with shared long term secret) com-
posed key exchange into smaller proofs. We then complete the
formal proof of security of a Diffie-Hellman key exchange (ISO
9798-3 [1]) for any number of sessions in parallel.

We generalize the application to key exchanges performing key
confirmations, i.e. using the derived key in the key exchange (as in
TLS). The generalization is simple, which is a clue of the usability
of our framework.

To illustrate the usability of our framework, we use all our results
to prove the security of the SSH [32] protocol with a modified agent
forwarding, a complex example of key exchange, with both key

confirmation and long term shared secrets. The modification, which
consists in the addition of a tag to specify if the signature was
performed remotely, is necessary for the protocol to satisfy some
natural security properties related to the agent forwarding.

1.2 Related Works

We introduce the composition problem through a process algebra:
protocols are either building blocks (defined,e.g, with a transition
system) or composed using parallel and sequential composition,
and replication. This prevents from committing to any particular
programming language, while keeping a clean operational seman-
tics. This approach is also advocated in [10], which follows a similar
approach. Other works on composition (e.g., [3, 28]) rely on specific
execution models.

Our starting idea, to prove a component w.r.t. a stronger attacker
that has access to the context, is not new. This is the basis of many
works, including [9-12]. The main difference, that we wish to em-
phasize, is that these works do not support long term shared secrets,
used in different components. Notably, the oracles of [10] are only
used to decompose protocols with state passing. Our notion of
simulatability allows sharing long term secret by granting the at-
tacker access to oracles that depend on the secrets (for instance,
signing oracles). It also allows a symmetric treatment for proofs of
a protocol and proofs of its context.

For several specific problems, typically key exchanges, there
are composition results allowing to prove independently the key
exchange protocol and the protocol that uses the exchanged key
[9, 11, 12, 23, 26]. In such examples, the difficulty also comes from
the shared secret, especially when there is a key confirmation step.
In that case, the derived key is used for an integrity check, which is
part of the key exchange. Then the property of the key exchange:
“the key is indistinguishable from a random” does not hold after
the key confirmation and thus cannot be used in the security proof
of the protocol that uses this exchanged key. In [11], the authors
define the notion of key independent reduction, where, if an attacker
can break a protocol for some key distribution, he can break the
primitive for the same distribution of the key. This is related to
our notion of simulatability, as interactions with shared secrets are
captured by an oracle for fixed values of the key, and thus attacks
on the protocol for a fixed distribution are naturally translated
into attacks against the primitive for the same distribution. Key
exchanges with key confirmation are therefore a simple application
of our composition results. Along the same line, [23] extends [12] to
multi staged key exchanges, where multiple keys might be derived
during the protocol. While we do not directly tackle this in our
paper, our framework could be used for this case.

The authors of [9] also provide results allowing for the study of
key renewal protocols (which we consider in the long version [17]),
and has the advantage to be inside a mechanized framework, while
we only cast our results inside a mechanizable framework. It does
not however consider key confirmations.

The UC framework initiated by [15] and continued in [4, 14, 25]
is a popular way of tackling composition. As explained above, this
follows a “bottom-up” approach, in which protocols must be secure
in any context, which often yield very strong security properties,
some of which are not met in real life protocols. Moreover, to handle



multiple sessions of a protocol using a shared secret, joint-state
theorems are required. This requires a tagging mechanism with
a distinct session identifier (sid) for each session. Relaxing this
condition, the use of implicit session identifiers was established
in [27] for the UC framework, ideas continued in [26] for Diffie-
Hellman key exchanges, where they notably provide a proof of the
ISO 9798-3 [1] protocol.

We do not consider a composition that is universal: it depends on
the context. This allows us to relax the security properties regarding
the protocol, and thus prove the compositional security of some
protocols that cannot be proved secure in the UC sense. We also
rely on implicit sids to prove the security of multiple sessions. Some
limitations of the UC framework are discussed in [12, Appendix A].

In [3], the authors also address the flexibility of UC (or reactive
simulatability) showing how to circumvent some of its limitations.
The so-called “predicates” are used to restrict the order and contents
of messages from environment and define a conditional compos-
ability. Assuming a joint-state conditional composability theorem,
secret sharing between the environment and the protocol might be
handled by restricting the accepted messages to the expected use of
the shared secrets. However, the framework does not cover how to
prove the required properties of (an instance of) the environment.

Protocol Composition Logic is a formal framework [22] designed
for proving, in a “Dolev-Yao model”, the security of protocols in a
compositional way. Its computational semantics is very far from the
usual game-based semantics, and thus the guarantees it provides
[21] are unclear. Some limitations of PCL are detailed in [20].

The compositional security of SSH, in the sense of [12], has been
studied in [31]. They do not consider however the agent forwarding
feature. It introduces important difficulties since the key exchange
is composed with a second key exchange that uses both the first
derived key and the same long term secrets. SSH has also been stud-
ied, without agent forwarding, in [13], where the implementation
is derived from a secure modelling in CRYPTOVERIF [8].

Summing up, our work is strongly linked to previous compo-
sition results and captures analogues of the following notions in
our formalism: implicit disjointness of local session identifiers [27],
single session games [12], key-independent reductions [11] and the
classical proof technique based on pushing part of a protocol inside
an attacker, as recently formalized in [10]. We build on all these
works and additionally allow sharing long term secrets, thanks to a
new notion of O-simulatability. This fits with the CCSA model: the
formal proofs of composed protocols are broken into formal proofs
of components. All these features are illustrated by a proof of SSH
with (a modified) agent forwarding.

2 PROTOCOLS AND INDISTINGUISHABILITY

We first recall some features of the CCSA model. Although this
model is not used until the case studies, it may be useful for an
easier understanding of the protocol semantics.

2.1 Syntax and semantics of terms

To enable composition with long term shared secrets, we must be
able to specify precisely the shared randomness between protocols.
We use symbols from an alphabet of names, to represent the ran-
dom samplings. The same symbol used twice represents the same

(shared) randomness. Those names can be seen as pointers to a
specific randomness, where all the randomness has been sampled
upfront at the beginning of the protocol. This idea stems from the
CCSA model [6], from which we re-use exactly the same term se-
mantics. This is one of the reason why our results, while applicable
in a broader context, fit naturally in the CCSA model. Let us recall
the syntax and semantics of terms drawn from the CCSA model.

Syntax. We use terms built over explicit names to denote mes-
sages computed by the protocol. The terms are defined with the
following syntax:

t u= n names
| n; indexed names
| x variable
|  f(t1,...,tn) operation of arity n

A key addition to the CCSA model is that some names can be
indexed by sequences of index variables. This is necessary so that
we may later on consider the replication of protocols. When a
replicated protocol depends on a name n;, the first copy (session)
of the protocol uses ni, the second ngy, .... Names without index
models randomness shared by all sessions of the protocol. Variables
are used to model the attacker inputs, and function symbols allows
to model the cryptographic computations.

Semantics. Terms are interpreted as bitstrings. As in the com-
putational model, the interpretation depends on some security pa-
rameter 7. As we assume that all the randomness is sampled at the
beginning, the interpretation depends on an infinitely long random
tape ps. We then leverage the notion of a cryptographic library',
that provides an interpretation for all names and function symbols.
A cryptographic library My provides for each name n a Probabilis-
tic Polynomial Time Turing Machine (PPTM for short) Ay, that
is given access to the random tape ps. As an additional input, all
machines will always be given the security parameter in unary.
Each Aj, extracts a bit-string of length 5 from the random tape.
Different names extract non-overlapping parts of the random tape.
In the interpretation, we give to all the PPTM the same random
tape ps, so each name is always interpreted with the same value
in any term (and thus any protocol), and all names are interpreted
independently.

My also provides for each function symbol f (encryption, sig-
nature,...) a PPTM A £ that must be deterministic. To model ran-
domized cryptographic primitives, additional randomness must be
given to the function symbol as extra names (cf. example 2.1).

Given My, the semantic mapping [-]| p’sa evaluates its argu-
ment, a formal term, given an assignment ¢ of its variables to
bit-strings and a random tape ps. For instance, if n is a name,
|In]]zs = An(17, ps) (extracts a bit-string of length 5 from the ran-
= ﬂsign(mv A (17, ps)).

{xm}

s

dom tape pg) and [[sign(x, k)]]f7

2.2 Syntax of the protocols

The summary of the protocol syntax is given in fig. 1. An elemen-
tary protocol models a thread running on a specific computer. let

denotes variable binding inside a thread, in(c, x) (resp. (out(c, m))
denotes an input (resp. an output) of the thread over the channel c,

!This corresponds in the CCSA model to the notion of functional model.



elementary protocols:
P,y == letx =tin Py, variable binding

| in(c,x).Pg; input
| out(c,m).Pg output
| ifs=t then P, else P,;  conditional
| o0 success
| L failure

protocols:

PP’ = P,
| PesP sequential composition
|  P||P’ parallel composition
| ['<Np bounded replication
| P unbounded replication

Figure 1: The protocol algebra

where all channels are taken out of a set C. For simplicity, channel
identifiers are constants or indexed constants. In particular, they are
known to the attacker. The if then else constructs denotes condi-
tionals, 0 is a successfully terminated thread and L is an aborted
thread.

For protocols, our goal is to state and prove general composition
results: we first consider sequential composition (the ; operator),
where 0; P reduces to P, while L; P reduces to L. In most cases, we
will omit 0. We also consider parallel composition (the || operator),
a fixed number N of copies running concurrently ||'<N, as well
as an arbitrary number of copies running concurrently ||*. For
instance, we can express a (two-parties) key-exchange consisting
of an initiator I and a responder R with I||R, the key exchange
followed by a protocol using the exchanged key (I; PT)||(R; PR), as
well as any number of copies of the resulting protocol running
in parallel: ||¥((I; PT)||(R; PR)). We can also consider an arbitrary
iteration of a protocol, “i» which could be used for expressing, for
instance, key renewal. For simplicity, this latter construction is not
presented in the current paper (see [17] for details).

We allow terms inside a protocol to depend on some free vari-
ables and, in this case, we denote P(xy, ..., xp) a protocol, which
depends on free variables x1, ..., xp. P(t1, . .., tn) denotes the pro-
tocol obtained when instantiating each x; by the term t;.

We denote N(P) (resp C(P)) the set of names (resp. channel
names) of P.

Example 2.1. Given a randomized encryption function enc, we
let P(c, x1, x2) be the protocol in(c, x).out(c, enc(x, x1, x2)). Given
names sk, r representing respectively a secret key and a random
seed, EN = ||"SNP(c;, r;, sk) is then the protocol allowing the
attacker to obtain cyphertexts for an unknown secret key sk. Un-
folding the definitions, we get:

En := P(c1,r1,8k)|| . . . ||P(cn, n, sk)
The generalization giving access to encryption for five secret
keys is expressed with ||* ||]£5P(Cj,i, rj,i»Skj).
2.3 Semantics of the protocols

We give here some essential features of the formal execution model,
which we need to formalize our composition results.

¢, (P, o) e ¢’ (P, 0")
$.(P;Q,0) = ¢, (P;0,0") $,(0;0,0) - ¢ (Q,0)

¢.(P.o) — ¢ (P’ 0")
$.(Po)lIE — ¢'(P',0")|IE

Figure 2: Operational Semantics (excerpt)

A (global) state of a protocol consists in a frame, which is a
sequence of bit-strings modelling the current attacker knowledge,
and a finite multiset of pairs (P, o), where P is a protocol and o is a
local binding of variables. Intuitively, each of the components of
the multiset is the current state of a running thread. We write such
global states ¢, (P1, o1)|| - - - [|(Pn, on).

The transition relation between global states is parameterized by
an attacker A who interacts with the protocol, modelled as a PPTM
with its dedicated random tape p,. The attacker chooses which
of the threads is going to move and computes, given ¢, the input
to that thread. In the following, the configuration of the protocol
and the security parameter are (also) always given to the attacker,
which we do not make explicit for simplicity.

We give some of the rules describing the Structural Operational
Semantics in fig. 2. The full semantics can be found in [17]. The
transition relation ? between configurations depends on the

attacker A, the security parameter n and the random samplings
ps (to interpret terms) and p, (the randomness of the attacker). In
P; Q, P has to be executed first. When it is completed (state 0), then
the process can move to Q, inheriting the variable bindings from P.
If P is not waiting for an input from the environment, it can move
independently from any of the other parallel processes.

The semantics of inputs (not detailed for simplicity) reflects the
interactions with the attacker. A computes the input to the protocol,
given a frame ¢ and its own random tape p;. Therefore transitions
depend not only on the attacker machines, but also? on the name
samplings ps (secret coins) and p, (attacker’s coins).

Example 2.2. Continuing example 2.1, the initial configuration
corresponding to Ep is 0, (P(cq, r1, sk), 0)||(P(c2, r2, sk), 0), where
the attacker knowledge is empty and no local variables are bound.
We provide in fig. 3 one of the possible reductions, for some attacker
A that first sends a message over channel ¢; and then c;.

We assume action determinism of the protocols [19]: given an
input message on a given channel, at most one of the threads may
move to a non-abort state. This means that each thread checks first
that it is the intended recipient of the message. This also means that
each output has to be triggered by an input signal: none of the P;
starts with an output action. We remark that in practice, protocols
are action determinate.

For replicated protocols [|ZSNP or ||!P, the names in P that are
indexed by the variable i are renamed as follows: ||!SNP is the

2They actually also depend on the oracle’s coins, when A is interacting with an
external oracle, which we explain later.



0, (P(c1, 71, k), O)||(P(c2, r2, sk), 0)
—y—[> 0, (out(cy, enc(x, r1, sk), {x — m})||(P(carz, sk), D)
m = A0, py) is the first input

message computed by the attacker
—; ¢, (P(c2, ra, sk), 0)

¢ = llenc(x, ri, sOILT7™ is the
interpretation of the output
received by the attacker

—; ¢, (out(cz, enc(x, r1, sk), {x — ma})

my = AP, pr) is the second input
message computed by the attacker

— @ llencterasO T "0

Figure 3: Reduction example

protocol P{i > 1}||...||P{i — N} and

6 (I'P,0IE — ¢, ("= AP PP, o)E.

In other words, the attacker chooses how many copies of P will
be considered, which may depend, in particular, on the security
parameter. A(p,, ¢) must be a natural number in unary.

2.4 Stateless oracle machines

For reasons that have been explained in the introduction, we wish
to extend the semantics of protocols and their indistinguishability
to attackers that have access to an oracle. At this stage, we need
stateless oracles in order to be compositional. Let us explain this.
Assume we wish to prove a property of R in the context P||Q||R.
The idea would be to prove R, interacting with an attacker that
simulates P||Q. This attacker is itself a composition of an attacker
that simulates P and an attacker that simulates Q. The protocols
P, Q, R share primitives and secrets, hence the simulation of P, Q
requires access to an oracle that holds the secrets. If such an oracle
was stateful, we could not always build a simulator for P||Q from
simulators of P, Q respectively, since oracle replies while simulating
Q could depend on oracle queries made while simulating P, for
instance.

The oracles depend on a security parameter 5 (that will not
always be explicit), (secret) random values and also draw additional
coins: as a typical example, a (symmetric key) encryption oracle
will depend on the key k and use a random number r to compute
enc(m, r, k) from its query m. Therefore, the oracles can be seen as
deterministic functions that take two random tapes as inputs: ps
for the secret values and p for the oracle coins.

Formally, oracles take as input tuples (m, r, s) where m is a finite
sequence of bit-strings, r is a handle for a random value and s is
a handle for a secret value. r and s are respectively used to ex-
tract the appropriate parts of pg, ps respectively, in a deterministic
way: the randomness extracted from p is uniquely determined by
m, r,s and the extractions for different values do not overlap. See
appendix A for more details.

In what follows, we only consider oracles that are consistent
with a given cryptographic library M. Such oracles only access

ps through some specific names. This set of names is called the
support of the oracle.

Example 2.3. We present the oracle Oznc’dec that provides both
an encryption and a decryption oracle for the key k. On input
< m,r,s >, the oracle:

e returns L if s # 1 (s can be used to select a specific key, and
the oracle only provides access to a single one);
e samples a bit-string r of length 1 from p¢, from a position

determined by the input;
{x—n,y—r}
Ps }
{xn,y—r}
Ps }
The support of the oracle is {k}, the only name used inside it.

An oracle machine (PPTOM) is a PPTM, equipped with an ad-
ditional tape, on which the queries to the oracle are written and
from which the oracle replies are read. We often write explicitly
the machine inputs, as in AOPs-p0) (1, pr), where w is the input
data of A, p, is its random tape and pg, po are the random tapes
accessible to the oracle. These definitions extend to multiple oracles
(01, ..., Oy), prefixing the query with an index in {1, ..., n}.

Note that once the oracle’s random tape is fixed, we ensure that
all our oracles are deterministic. While not strictly necessary, this
ensures that the various parts of the adversary do not need to
explicitly share states, as they can always recompute the answer to
oracle calls. This greatly simplifies proofs.

e if m = (“dec”, n), returns [dec(x, y, k)]

o if m = (“enc”, n), returns [enc(x, y, k)|

2.5 Computational indistinguishability

To define the classical notion of indistinguishability, we describe
how protocols may be seen as oracles, that an attacker can interact
with. Given a protocol P and a cryptographic library M, the oracle
Op is an extension of the previous oracles: it takes as an additional
input an history tape that records the previous queries. Given a
query m with history A (now the components r, s are useless), the
oracle replies what would be the output of P, given the successive
inputs h, m. It also appends the query m to the history tape.

The machines that interact with Op are also equipped with the
history tape that is read-only: the history can only be modified by
the oracle. Since P may use secret data, the oracle may access a
secret tape pg; this will be explicit.

An oracle may implement multiple parallel protocols: the oracle
O¢p,,...,p,) first checks which P; is queried (there is at most one
such i, by action determinism) and then replies as Op, .

Finally, we may consider oracles that combine protocols oracles

(O1,+--,0m).(Opy...

and stateless oracles. A ~Opy) is also written

AO1s+--0m,Op;>-.-,0p,,

Definition 2.4. Given a cryptographic library M, protocols P, Q
and a stateless oracle O , P is O-indistinguishable from Q, which
we write P = Q, when, for every PPTOM A,

|Pps,pr,p0{ﬂo(ps’pO)’OP(pS)(l'],Pr) =1}

~Pp..pr.p0 {ﬂO(PS»PO)’OQ(PS)(lﬂ’ pr) =1}

is negligible in 7.
We will later see several examples of O-indistinguishability. Re-

mark that the oracle only increases the capabilities of the attacker,
and thus for any P, Q and O, P = Q implies P = Q.



3 SIMULATABILITY

As an example, consider a protocol P that uses a shared encryption
key k, and may only accept encrypted messages whose plaintext
satisfy a condition Tp (e.g. tagged messages). Intuitively, this proto-
col may be composed with any context that uses the shared key to
encrypt plaintexts that cannot be confused with messages intended
for P. We capture this by proving this protocol while giving the
adversary access to an oracle O, where O lets the adversary encrypt
any message as long as it does not satisfy Tp. Then if P is “secure”,
P composed with any context that can be simulated using only O
to access k is “secure”. We define now this notion of simulatability.

3.1 Protocol simulation

The goal in the rest of the paper is to use this notion of simulatability
to obtain composability results. Suppose one wants to prove P||Q =
P||R, knowing that Q =p R and P is O simulatable. The way to
obtain a distinguisher for Q =5 R from one on P||Q = P||R is
to “push” the (simulated version) of P within the distinguisher. A
protocol P is then simulatable if there exists a simulator A9 that
can be “pushed “ inside any distinguisher 9. We formalize this
construction below, where a protocol is simulatable if and only if
any distinguisher O behaves in the same way if the protocol oracle
Op is replaced by its simulator A9 . We define formally D[A]°
the replacement of Op inside D-0F.

Definition 3.1. Given an oracle O, a cryptographic library My, a
protocol P, PPTOMs DO0p (prp»17) and ﬂo(- -+, 17), we define
D[A19(p,, 1) as the PPTOM that:

(1) Splits its random tape p, into py,, pr,

(2) Simulates D-9P(p,,, 17) by replacing every call to Op with
a computation of AQ9: each time D enters a state corre-
sponding to a call to Op, D[AY] appends the query m
to a history 6 (initially empty), executes the subroutine
ﬂo(ps’pm(pr1 ,0,17) and behaves as if the result of the sub-
routine was the oracle reply.

(3) Prefixes each random handle of an oracle call of D with 0
and random handle of an oracle call of A with 1.

(4) Outputs the final result of D.

Z)[.?[O]O must simulates A and O so that they do not share
randomness. To this end, D[A]9 first splits its random tape p,
into pr, (playing the role of pp) and p,, (playing the role of pp).
The oracle queries are prefixed by distinct handles for the same
reason. D-9P has access to the shared secrets via both O and
Op, while D[A]9 only has access to them through the oracle
O . Remark that if A9 and D9-97 has a run-time polynomially
bounded, so does D[.?[O]O.

To define the central notion of O-simulatability, the distribution
produced by any distinguisher interacting with the simulator must
be the same as the distribution produced when he is interacting
with the protocol. However, as we are considering a set of shared
secrets n that might be used by other protocols, we need to ensure
this equality of distributions for any fixed concrete value v of the
shared secrets. Then, even if given access to other protocols using
the shared secrets, no adversary may distinguish the protocol from
its simulated version.

Definition 3.2. Given a sequence of names 7, an oracle O with
support 1, a cryptographic library Mg, a protocol P, then, vn.P is
O-simulatable if and only if there exists a PPTOM ﬂg such that
for every PPTOM DO’OP, for every n, every v € ({0, 1}’7)m|, cE
{0, 1},

P,Ds,,ﬂr,po {DO,OP(pr, 1M =¢| [[ﬁ]]Zs =0}
= Ppe.pr.po {D[ﬂg]o(pr, 1M =c| I[ﬁ]]Zs =7}

Note that our definition of simulatability is a very strong one
as it requires a perfect equality of distributions, as opposed to
computational indistinguishability. This is intuitively what we want:
O-simulation expresses that P only uses the shared secrets as O
does. This notion is not intended to capture any security property.

While this definition intuitively captures the proof technique
used to allow composition, it does not provide insight about how
to prove the simulatability. Another equivalent definition states
that a protocol is simulatable if there exists a simulator that can
produce exactly the same distribution of messages as the protocol
interacting with any attacker. The formal definition corresponding
to this intuition, and the proof that is is equivalent to our main
definition are provided in appendix B.

Example 3.3. We fix first M (in an arbitrary way). We consider
the following handshake protocol, in which n, r, k, r’ are names:

A= in(ca,x0).0ut(cp,enc(n,r,k)). in (ca,x).
if dec(x, k) = (n, 1) then out(cg, ok)

I B= in(cp,y).out(ca,enc({dec(y, k), 1),r’, k))

We consider the oracle Oinc’dec from example 2.3. We can easily

prove that vk.A is -simulatable, as the attacker can sample

Oznc,dec
an arbitrary n’, use the oracle to compute enc(n’, rq, k) (which as
the same distribution as enc(n’, r, k) for any fixed value of k) with
the request < (“enc”,n),1,1 >, and dec(x, k) with the request <
(“dec”, x),1,1 >.

Intuitively, the shared secret k is only used inside A in ways
that are directly simulatable with the oracle, and A is thus Oznc’dec—

simulatable.

Thanks to the definition of appendix B, proving simulatability
is in practice a syntactic verification. For instance, vk.P is Oznc’dec
-simulatable (example 2.3) if k only appears in P in key position of an
encryption or a decryption, and all encryptions use fresh randoms.
With this definition, simulatability is stable under composition
operators. This allows to reduce the simulation of large processes

to the simulation of simpler processes.

THEOREM 3.4. Given an oracle O, protocols P, Q, andn = N(P) N
N(Q), if vn.P and vn.Q are O-simulatable, then vn.P||Q and vn.P; Q
are O-simulatable.

3.2 Generic oracles for tagged protocols

In order for our definition of simulatability to be useful, the design
of oracles is a key point. They need to be:

(1) generic/simple, yet powerful enough so that protocols can
be easily shown to be simulatable,



(2) restrictive enough so that proving protocols in the presence
of oracles is doable.

We provide here with examples of such oracles, namely generic
tagged oracles for signature, that will be parameterized by arbitrary
functions, together with security properties that are still true in the
presence of tagged oracles. We see tagging as a boolean function T
computable in polynomial time over the interpretation of messages.
For instance, if the messages of protocol P are all prefixed with the
identifier idp, T is expressed as T(m) := Ix.m = (idp, x). In a real
life protocol, idp could for instance contain the name and version
of the protocol.

Intuitively tagged oracles produce the signature of any properly
tagged message and allow to simulate P.

With these oracles, an immediate consequence of the compo-
sition Theorems found in section 4 is the classical result that if
two protocols tag their messages differently, they can be safely
composed [2]. Note that as our tag checking function is an arbi-
trary boolean function: tagging can be implicit, as illustrated in our
applications in section 5.

As an example, we provide two oracles, one for encryption and
one for signing, that allow to simulate any protocol that only pro-
duces messages that are well tagged for T.

Definition 3.5. Given a name sk and a tagging function T, we
define: O;.iink(m) = if T(m) then

output(sign(m, sk))
if T(dec(m, sk)) then

output(dec(m, sk))

d —
OT?‘s:k(m) =

Any well-tagged protocol according to T, i.e. a protocol that
only decrypts or signs well tagged messages, will be simulatable
using the previous oracles. Hence we meet the goal 1 stated at the
beginning of this section, as this can be checked syntactically on a
protocol. We provide, as an example, the conditions for a tagged
signature.

Example 3.6. Any protocol P whose signatures are all of the
form if T(t) then sign(t, sk) for some term t (that does not use
sk) is immediately vsk.P O?gsnk-simulatable. Indeed, informally,
all internal values of the prot’ocol except sk can be picked by the
simulator from its own randomness, while all terms using sk can be
obtained by calls to the tagged signing oracle, as all signed terms in
P are correctly tagged. Let us emphasize that the simulation holds
for any specific value of sk, as the distribution of outputs is the
same, whether it is the simulator that draws the internal names of
P, except sk, or P itself.

As we need to perform cryptographic proofs in the presence
of oracles, it is useful to define security properties that cannot be
broken by attackers with access to these oracles (without having
to consider the specific calls made to these oracles). The games
defining these properties slightly differ from the classical security
games. Consider the example of signatures and the usual EUF-CMA
game. If the attacker is, in addition, equipped with an oracle O that
signs tagged messages, he immediately wins the EUF-CMA game,
“forging” a signature by a simple call to O. We thus define a tagged
unforgeability game (EUF-CMAT i), derived from the EUF-CMA

game [24], where the adversary wins the game only if he is able to
produce the signature of a message that is not tagged.

Definition 3.7. A signature scheme (Sign, Vrfy) is EUF-CMAT ¢
secure for oracle O and interpretation of keys Ay if, for any PP-
TOM A, the game described in fig. 4 returns true with probability
(over pr, ps, po) negligible in 5.

Game EUF-CMAT’fk(q, Prs Pss PO Oracle Sign(m):
List « (m : List)
o « Sign(sk, m)
Return o

List « []

(pk, sk) — ([[pkllp, [skllp,)

(m, o) — AOPs:Po)-SiEn(pk, . p,)
Return =T(m) A Vrfy(pk, m, o) A m ¢ List

Figure 4: Game for Tagged Unforgeability (EUF-CMA7 )

The main goal of the previous definition is to allow us to prove
protocols in the presence of oracles (hence composed with simu-
lated ones), reaching the goal 2 stated at the beginning of the section.
More precisely, one can, for instance, simply design a classical game
based proof, reducing the security of the protocol to the security of
the EUF-CMAT ¢ game rather than the classical EUF-CMA game.
This reasoning is valid as EUF-CMA implies EUF-CMAT ¢ even
in the presence of the corresponding oracle.

ProposITION 3.8. If a signature scheme (Sign, Vrfy) is EUF-CMA
secure for keys given by Agy, then (Sign, Vrfy) is EUF-CMAT sk

sign . .
secure for the oracle OT,sk and the interpretation of keys Agy.

4 MAIN COMPOSITION THEOREMS

We distinguish between two complementary cases. First, protocols
composed in a way where they do not share states besides the
shared secrets (e.g. parallel composition of different protocols using
the same master secret key). Second, protocols passing states from
one to the other (e.g. a key exchange passing an ephemeral key to
a secure channel protocol). We finally extend these composition
results to self-composition, i.e. proving the security of multiple
sessions from the security of a single one.

4.1 Composition without state passing

Essentially, if two protocols P, Q are indistinguishable, they are
still indistinguishable when running inside any simulatable context.
The context must be simulatable for any fixed values of the shared
names of P, Q and the context. The context can contain parallel or
sequential composition as illustrated by the following example.

Example 4.1. Let P, Q, R, S be protocols and O an oracle. Let n =
N(P|Q) N N(R||S). If P =¢ Q and vn.R||S is O-simulatable, then
theorem 4.3 yields P||R =g QO|R, R;P =p R;Q and (R; P)||S =o
R Q)IIS.

We generalize the previous example to any simulatable context
and to n protocols. For any integer n, we denote by C[_1,...,_p]a
context, i.e. a protocol built using the syntax of fig. 1 and distinct
symbols _;, viewed as elementary processes. C[Py, ..., Pp] is the
protocol in which each hole _i is replaced with P;. We say that a
hole is terminal if it is not followed by any sequential composition.



Example 4.2. In the three cases of example 4.1, in order to apply
the next theorem, we respectively use as contexts C[_1] := _1[|R,
Clll=Ri_yand C[_1] = (R _pIIS.

In this first theorem, no values (e.g. ephemeral keys) are passed
from the context to the protocols. In particular, the protocols do
not have free variables which may be bound by the context.

THEOREM 4.3. Given a cryptographic library My and an oracle O,
letP1,...,Pn,Q1,...,0Qn beprotocolsandC|_1, .. .,_y] bea context
such that all their channels are disjoint, 0 some constant, n a sequence
of names and cy, . . ., ¢, fresh channel names. If

() NOONN(P1,...,Py,01,...,0p) C 1

(2) vn.Clout(cy,0),...,out(cy, 0)] is O-simulatable

(3) Pill...1IPn =0 Q1ll ... 1Qn
Then C[Pl, . ,Pn] =0 C[Ql, ey Qn]

In addition, the advantage of the adversary in distinguishing
C[P1,...,Pn] and C[Qs, ..., Qn] is bounded by the advantage of
the adversary in distinguishing P1|| - - - ||Pp and Q1| - - - ||Qn, with a
polynomial overhead on the runtime of the simulator. Note that the
bound we obtain for the reduction is polynomial in the running time
of the context. The intuition behind the proof of the Theorem is as
follows, where we denote C := Clout(cy, 0), . . ., out(cp, 0)]. Intu-
itively, C abstracts out the components P;, only revealing which P;
is running at any time. We start by showing that ClIPill - .. |1Pn =0
CllQ1ll ... I|Qn implies C[Py,...,Py] =¢o C[Q1,...,Qn]. This is
done by a reduction, where we mainly have to handle the sched-
uling, which is possible thanks to the simulatability of C, and the
action determinism of the protocols. In a sense, this means that
indistinguishability for protocols in parallel implies indistinguisha-
bility for any scheduling of those protocols. Secondly, by simulating
the context thanks to proposition B.2, the hypothesis of the theo-
rem implies C||Py]| . . . ||Pn =0 CllO1]l. .. [|On. The second part is
where our notion of simulatability comes into play, and where it
is essential to deal carefully with the shared secrets. The proof of
theorem 4.3 can be found in Appendix C, and other proofs in [17].

Given a protocol P and a context C, for theorem 4.3 to be used,
we need an oracle such that:

(1) the context C is simulatable with the oracle O,

(2) the protocol P is secure even for an attacker with access to

Our goal is to find an oracle that is generic enough to allow
for a simple proof of indistinguishability of P and Q under the
oracle, but still allows to simulate the context. Notably, if we take
as oracle the protocol oracle corresponding to the context itself, we
can trivially apply theorem 4.3 but proving P =5 Q amounts to
proving C[P] = C[Q].

4.1.1  Application to tagged protocols. We consider two versions
of SSH, calling them SSH2 and SSH1, assuming that all messages
are prefixed respectively with the strings “SSHv2.0” and “SSHv1.0”.
Both versions are using the same long term secret key sk for signa-
tures. We assume that both versions check the string prefix.

To prove the security of SSH2 running in the context of SSH1,
we can use theorem 4.3. We denote I the idealized version of SSH2,
the desired conclusion is then SSH2||SSH1 = I||SSH1. We use
C[_1] = _1lISSH1, it is then sufficient to find an oracle O such that:

(1) vsk.SSH1 is O-simulatable (the simulatability of C directly
follows),

(2) SSH2 =p I

DeﬁningA Tssp1 as the function checking the prefix, SSH1 is

trivially O;gg:m s simulatable (see definition 3.5) as SSH1 does

k

enforce the tagging checks. We thus let O be O;f:m,s e
Assuming that sign verifies the classical EUF-CMA axiom, by

proposition 3.8, it also verifies the tagged version EUF-CMA. .\ sk

To conclude, it is then sufficient to prove that SSH2 = I with a

reduction to EUF-CMAT. (. sk-

4.1.2  Example of application to encrypt and sign. For performances
considerations, keys are sometimes used both for signing and en-
cryption, for instance in the EMV protocol. In [29], an encryption
scheme is proven to be secure even in the presence of a signing
oracle using the same key. Our Theorem formalizes the underlying
intuition, i.e., if a protocol can be proven secure while using this en-
cryption scheme, it will be secure in any context where signatures
with the same key are also performed.

4.2 Composition with state passing

In some cases, a context passes a sequence of terms to another
protocol. If the sequence of terms is indistinguishable from another
one, we would like the two experiments, with either sequences of
terms, to be indistinguishable.

Example 4.4. Let us consider once again the protocol P(x1, x2) :=
in(c, x).out(c, enc(x, x1, x2)) of example 2.1. We assume that we
have a function kdf, which, given a random input, generates a
suitable key for the encryption scheme. With seed a random name,
let C[_;] := let sk = kdf(seed) in _;. C[||*P(r;, sk)] provides an
access to an encryption oracle for the key generated in C:

let sk = kdf(seed) in

CUIPGri. k)] = 1 (in(e, x).out(c, enc(x, i, sk)))

Based on the fact that C[out(c, sk)] = Clout(c, n)] for an oracle
O and a fresh name n such that vsk.P is O-simulatable, we can
conclude that C[||*P(rj, sk)] = C[||* P(ri, n)].

A classical example is a key exchange, used to establish a secure
channel. The situation is dual with respect to theorem 4.3: contexts
must be indistinguishable and the continuation simulatable.

THEOREM 4.5. Let C, C’ be n-ary contexts such that each hole is ter-
minal, and let P1(X), . . ., Pp(X) be parameterized protocols, such that
all channel sets are pairwise disjoint. Given a cryptographic library
My, anoracle O .71 2 N(C)NN(PL,....Pp). H. ... ot
sequences of terms, if

) Clout(c1, 1), . - .,Eut(cn,ﬂ)] .

=0 C'lout(cy, t)), ..., out(cn, ty)]

(2) vn.in(cy, x).P1(X)|| ... |lin(cp, X).Pp(X) is O-simulatable

then C[Py(1y). ... Pu(tw)] 20 C'[Pi(t)). ... Pa(t)]

In addition, the advantage of the adversary in distinguishing
CIP1(t1), - . ., Pu(tn)] and C[P1(t]), ..., Pu(t})] is bounded by the

advantage of the adversary in distinguishing C and C’, with a poly-
nomial overhead on the runtime of the simulator.



For the sake of simplicity, we often omit channels. When we do
so, we only assume that they are all distinct. The following example
shows how theorems 4.3 and 4.5 can be used to derive the security
of one session of a key exchange composed with a protocol.

Example 4.6. Let us consider a key exchange I||R where x! (resp.
xR) is the key derived by the initiator I (resp. the responder R) in
case of success. We denote KE[_1, _»] := I; _1||R; _5 the composition
of the key exchange with two continuations; the binding of x'
(resp. xR) is passed to the protocol in sequence. Consider possible
continuations PT(xT), PR(xR) that use the derived keys and ideal
continuations (whatever “ideal” is) QT (xT), OR(xR). We sketch here
how to prove KE[PT(xT), PR(x®)] = KE[QT(xT), OR(x®)] (i.e., the
security of the channel established by the key exchange). This
will be generalized to multi-sessions in section 5. We use both
theorems 4.3 and 4.5. Assume, with k a fresh name, that:

(1) O, is an oracle allowing to simulate the key exchange
(2) Op, o allows to simulate in(x).P!(x)||in(x).PR(x) and
in(x).Q" (x)llin(x).Q (x)

3) PIR)IPR(K) =0, Q"(K)IQR (k)

(4) KE[out(x"), out(x®)] =0, , KE[out(k), out(k)]
Hypothesis 3 captures the security of the channel when executed
with an ideal key, and Hypothesis 4 captures the security of the
key exchange. Both indistinguishability are for an attacker that can
simulate the other part of the protocol.

Using theorem 4.3 with Hypothesis 1 and 3 yields

KE[P'(k), PR(k)] = KE[Q (k), QR (k)]

Hypothesis 2 and 4 yield, with two applications of theorem 4.5, one
for P and one for Q, that KE[P!(x]), PR(xR)] = KE[P!(k), PR(k)]
and KE[QT(xT), QR (x®)] = KE[Q' (k), QR (k)]. Transitivity allows
us to conclude that the key exchange followed by the channel
using the produced key is indistinguishable from the key exchange
followed by the ideal secure channel:

KE[P'(x"), PR ()] = KE[Q' (), Q% (x™)]

4.3 Unbounded replication

An important feature of a compositional framework is the ability
to derive the security of a multi session protocol from the analysis
of a single session. To refer to multiple sessions of a protocol, we
consider that each session uses some fresh randomness that we see
as a local session identifier.

The main idea behind the Theorem is that the oracle will depend
on a sequence of names of arbitrary length. This sequence of names
represents the list of honest randomness sampled by each party of
the protocol, and the oracle enables simulatability of those parties.

The following Theorem allows to prove the security of an arbi-
trary number of sessions of a protocol, even when the number of
sessions depends on the security parameter.

THEOREM 4.7. Let Oy, O be oracles both parameterized by a
sequence of names s. Let p be a sequence of names, Pi(x,7y) and
Qi(x,y,z) be parameterized protocols, such that the set of indexed
names of P and Q is disjoint of the oracles support. If we have, for
sequences of names Isid ,lsidQ , withs = {Isid; ,lsid?}ieN :

() VYi=1,vp, mf.Pi(ﬁ, @f) is O, simulatable.

2)Vi=1vp, @?.Qi(p, @?,5) is O, simulatable.
(3) s is disjoint of the support of O.

_ —P —0Q _
(@) Po(p, I5idy ) =0,..0 Qo(p, Isidy3)
then, ||1P;(p. Isid) ) = ||'Qi(p. Isid=.5)

To prove the security of an unbounded number of sessions in
parallel, we can with this Theorem only prove the security of a
single session (Hypothesis 4), if this proof holds when the attacker
has access to an oracle that allows to simulate the other sessions of
the protocol (Hypothesis 1,2). The extra oracle O allows to apply in
sequence our theorems, and we thus require that this oracle does
not interfere with the replication (Hypothesis 3).

The extra argument s of Q is not necessary for the above theorem.
It is however useful in our applications, where Q is an idealized
version. To prove this result, we use the explicit advantages that
can be derived from our composition Theorems, which increases
polynomially with respect to the number of sessions, and apply a
classical hybrid argument to conclude.

In our applications (section 5), the main idea is to first use theo-
rem 4.7 to reduce the multi-session security of a key exchange or
a communication channel to a single session, and then use theo-
rems 4.3 and 4.5 to combine the multiple key exchanges and the
multiple channels.

5 APPLICATION TO KEY EXCHANGES

Although our framework is not tailored to key exchanges or any
specific property, we choose here to focus on its application to key
exchanges. We outline how our theorems may be used to prove
the security of a protocol using a key derived by a key exchange
in a compositional way. (Let us recall that the key exchange and
the protocol using the derived key may share long term secrets). A
formal corollary can be found in the long version [17].

5.1 Our model of key exchange

In order to obtain injective agreement, key exchanges usually use
fresh randomnesses for each session as local session identifiers. For
instance in the case of a Diffie-Hellman key exchange, the group
shares may be seen as local session identifiers.

As in example 4.6, KE is a key exchange with possible continua-
tions. In addition, we consider multiple copies of KE, indexed by i,
and local sid for each copy:

KEi[ 1, ) = I(sid!,id");_||R(siaR, idR); ,

idX is the identity of X and IsidX represents the randomness
that is be used by X to derive its local session identifier.

In the key exchange, I binds x! to the key that it computes,
xlISl. 4 to the value of Isid received from the other party and xl.I 4 the
lsid
and xﬁi. For simplicity, we only consider here the case of two fixed
honest identities. The general case is considered in [17].

If we denote Pl.I (T )||P1R (xR) the continuation meant to use the
secret key derived in the key exchange, KEi[Pl.I (D, PIR (x®)] is the
composition of a session of the key exchange with the protocol
where the values of x!, xR (computed keys) are passed respectively
to PI.I (x") or PIR (xR®). With Q an idealized version of P (however it

received identity. Symmetrically, R binds the variables xR, x



is defined), the security of the composed protocol is expressed as
IPKEP] ("), PR ()] = IIPKE Q] (). QF (x)

Intuitively, from the adversary point of view, P is equivalent to its
idealized version, even if the key is derived from the key exchange
as opposed to magically shared.

Equivalently, the security of the composed protocol is expressed
as||"=NKE;[P](x), PR(xF)] = |=NKE;[Q] (x), O (xF)], provided
that the adversary advantage is polynomial in N.

5.2 Proofs of composed key exchange security

Following the same applications of theorems 4.3 and 4.5 as in ex-
ample 4.6, we decompose the problem into the following goals:

(1) find an oracle Op, ¢ to simulate multiple sessions of P or Q,

(2) design an oracle O, to simulate multiple sessions of KE

(3) complete a security proof under Oy, for multiple sessions
of the protocol using fresh keys,

(4) complete a security proof under Op o for multiple sessions
of the key exchange.

We further reduce the security of the protocol to smaller proofs
of single sessions of the various components of the protocols un-
der well chosen oracles. The following paragraphs successively
investigate how to simplify the goals (1),(2),(3),(4) above.

We denote p = {id!,idR} and assume that they are the only
shared names between KE, P and Q and are the only names shared
by two distinct copies P;, Pj (resp. Q;, Q). We also denote 5 =
{lsid{, lsile}ieN the set of all copies of the local session identifiers.

5.2.1 Protocol simulatability. Assume that there is an oracle Op o
such that vp.in(x! ).PiI (cD|lin(xR ).PIR (xR)is Op, o simulatable (and
a similar result replacing P with Q), then, thanks to theorem 3.4,
vf).||i(in(xl).PiI(xI)Hin(xR).PlR(xR)) is Op, o simulatable (and sim-
ilarly for Q). This meets the condition (2) of theorem 4.5.

5.2.2 Key exchange simulatability. For the simulation of the key
exchange context, we need N copies of KE and, in each of them, the
initiator (resp. the responder) may communicate with N possible
responders (resp. initiators). We therefore use theorem 4.3 with
a context C with 2N? holes. C is the parallel composition of N
contexts and, as above, we use theorem 3.4 to get the condition (1)
of theorem 4.3. Let KE; be?

KE;[ |f xlI id lsidR then out({i, j)) else L,
S
I
1<j<N lszd lszd then out({i,j)) else L]

C is then ||i5NKE; and C can be inferred by replacing each
out((i, j)) with a hole. Then, assuming that vp.KE is O, simulat-
able, we get, thanks to theorem 3.4 the condition (1) of theorem 4.3.

5.2.3 Security of the protocol. Our goal is ||*P;(k;) =01e I1EQ; (ky).
Based on theorem 4.7, we only need an oracle O, so that:

(1) V1 < i,vp, ki.Py(k;) is O, simulatable,

(2) Y1 <i,vp, ki.Qo(k;i) is O, simulatable,

(3) s is disjoint of the support of O,

(4) Po(ko) =0,,0,, Qo(ko).

|f C: then a; else a’ := if ¢; then a; else if ¢, - - - then a,, else a’

3we denote 1<

We use the fresh names k; to model fresh magically shared keys,
and use them as local sids for theorem 4.7. The intuition is similar
to the notion of Single session game of [12], where the considered
protocols are such that we can derive the security of multiple ses-
sions from one session. For instance, if the key is used to establish a
secure channel, revealing the other keys does not break the security
of one session, but allows to simulate the other sessions.

5.2.4  Security of the key exchange. The security of the key ex-
change is more bothersome, in the sense that it cannot simply be
written with a classical replication. The partnering of sessions is
not performed beforehand, so we must consider all possibilities.
We may express the security of a key exchange by testing the real-
or-random for each possible session key. We denote k; ; the fresh
name corresponding to the ideal key that will be produced by the
i-th copy of the initiator believing to be partnered with the j-th
copy of the responder. The security of the key exchange is captured
through the following indistinguishability:

II=NKE;[out(x]), out(x®)] =

|isN KE,-[ lf xlIS 4 l’sid]R then out(k; ;) else L,
1<f< CE zsid}) then out(k;j, ;) else L]

where the advantage of the attacker is polynomial in N.

Using a classical cryptographic hybrid argument (detailed in
[17]), we reduce the security of multiple sessions to the security
of one session in parallel of multiple corrupted sessions; the secu-
rity of each step of the hybrid game is derived from eq. (1) using
theorem 4.5. It is expressed, with statelX = (xX, lszdx X7 d> as

' <NKE;[out((statel)), out((stateX))] =0, o
||I<N-1KE; [out((stateI Y, out(<stateR))]
| KEn[if x]_,, = Isid} then out((k, Isid};, x] . ,))
Sl S

else if xlIsid ¢ {lsidf}lsisN_l then L,
else out((state{)),
if 2, = Isid} then out((k, IsidR, x 1))
else if xﬁld ¢ {lsid{}lsisN_l then J_
else out((statef))]

We further reduce the problem to proving the security of a single
session even when there is an oracle simulating corrupted sessions.
To this end, we need to reveal the dishonest local session’s identi-
fiers to the attacker, but also to allow him to perform the required
cryptographic operations, e.g. signatures using the identities.

We define, for X € {I,R}, 5% as the set of copies of the local
session identifiers of I or R, except a distinguished one (indexed 0
below) and 5 = 57 UK. To obtain the security of multiple sessions
of the key exchange, we then only have to use theorem 4.3* with
the following assumption: :

(1) V1 <i < N-1,visid!, id!, IsidR, idR.

KE;[out(x), out(x®)] ||out((lsid§, lsidf)) is O simulatable.

(2) 5 is disjoint of the support of Op .

(3) KEn[out((x!, Isid}, x] , )), out((xR, IsidR, xR ))]

207.0p.0 KENICL,R, CR,1]

4We also use theorem 3.4 to get the simulatability of N sessions in parallel from the
simulatability of each session. In [17], this is formalized inside a dedicated Proposition.



RECEIVER

INITIATOR

pk(skp), g%

pk(skg). g%, sign((g%. g% . pk(sky)). skg)

sign((g”, g%, pk(skg)), skr)

Figure 5: ISO 9798-3 Diffie Hellman key exchange

if xﬁ id
else if xl)iid ¢ 5Y then L

else out((xX, lsid%,xl)iidﬁ

Intuitively, if the initiator believes to be talking to the honest re-
sponder, then he outputs the ideal key, and if it is not talking to
any simulated corrupted party, it raises a bad event.

Note that while the structure of the proof does not fundamentally
change from other proofs of key exchanges, e.g [12], each step of the
proof becomes straightforward thanks to our composition results.
Our proofs are also more flexible, as shown by the extension to key

exchanges with key confirmation in section 7.

= Isidy; then out((k, Isidy, x)X. 1))

with Cxy :=

6 BASIC DIFFIE-HELLMAN KEY EXCHANGE

We outline here the application of our framework to the ISO 9798-
3 protocol, proven UC composable in [26]. We use our result to
extend the security proof to a context with shared long term secrets.
We present the protocol in fig. 5, and show how to instantiate
the required values and oracles to perform the proof presented
in section 5.2. The formal proofs (using the CCSA model [6]) are
provided in [17].

The identity of each party is its long term signing key, and
thus, we use sk; and skg as idy and idg. Each session of the key
exchange instantiates a fresh Diffie-Hellman share, that can be seen
as a local session identifier. We use g% and gbi as lsidiI and lsidll.z.
These values can also be used as implicit tagging since any signed
message either depends on a; or b;. To define this implicit tagging,
we extend the tagging function T of definition 3.5 so that it may
depend on a second argument of arbitrary length, yielding T(m, s),

sign
Tosks The exact

definition is given later in definition 8.2. Letting 5= {aili > 1}

the corresponding signing oracle being denoted O

and 5® = {b;|i > 1}, we define the implicit tagging functions
T! and TR as TX(m,5) := 3s € 5%,3my, me.m = (my, g%, my).
WihOp =03, O
elements in 5, we obtain the simulatability of multiple sessions of
the key exchange (hypothesis 2 of section 5.2). For hypothesis 4 of
section 5.2 we use the method of section 5.2.4: we consider the key
exchange KEy, followed either by the output of the computed keys,
the computed Isid and the real Isid or by Cr g, Cg,J.

The protocol sketched in fig. 5 actually assumes some verifica-
tions; for instance the value sent in the first message should match
g% in the last message. Therefore, when the protocol of fig. 5 is

Os, where Og simply reveals the

successfully completed, we can prove that if xlISl. 4 * g, then

xlIsid € {gbi |i € N}, ie. TI(xf;id) is true (and similarly for R). It fol-
lows that Cy g, Cr, 1 either corresponds to a matching conversation
between the sessions with sids g, gb", in which case the output is
(twice) an ideal key k, or else it is a matching conversation with a
simulated session, in which case it outputs the computed keys. The
proof of the property 3) of section 5.2.4 is thus a real-or-random
proof of a honestly produced key.

The previous security proof can be performed under oracle Op o
that allows to simulate the continuation (hypothesis 1 of section 5.2).
The continuation should be proven secure when using an ideal
key (hypothesis 3 of section 5.2). In some cases, this step is trivial.
Indeed, let us consider a record protocol L := LY (xT)||LR (xR), that
exchanges encrypted messages using the exchanged key, and does
not share any long term secret. Without any shared secret, we do
not need any oracle to simulate in(k); L1(k)||in(k); LR (k), we can
choose a trivial Op o that does nothing.

7 EXTENSION TO KEY CONFIRMATIONS

We consider key exchanges where the key is derived in a first part
of the protocol and then used in the second part. We proceed as
in section 5, outlining how we may split the security proof into
smaller proofs, using the same composition theorems at each step.
Compared to [11], our method allows in addition long term secret
sharing.

Consider a key exchange I,-(lsid{, idI)||R,-(lsid§, id®). We further
split I and R into [; := I?;Il.1 and R; := R?;Rl!, where I? and R?
correspond to the key exchange up to, but not including, the first
use of the secret key, and Il.1 and Rl! are the remaining parts of the
protocol. The intuition behind the proof of security is that at the end
of I? and R(l.), i.e. just before the key confirmation, either the sessions
are partnered together and the derived key satisfies the real-or-
random, or they are not and the key confirmation will fail. The key
point for applying the composition theorems is that any protocol
using the derived key must then be secure in the presence of an
oracle O such that Il.l, Rl! is O simulatable (in particular the derived
key is in the support of O). For typical cases, this is rather simply
an oracle providing a hash of the key or some specific encryption
of the confirmation message with the key. Specific hypotheses and
details of the technique are provided in appendix D.

7.1 Application to SSH

SSH [32] is a protocol that allows a user to login onto a server from
its platform. It is widely used in the version where signatures are
used for authentication. An interesting feature is agent forwarding:
once a user u is logged on a server S, he may, from S, perform
another login on another server T. As S does not have access to the
signing key of u, it forwards a signature request to the u’s platform
using the secure SSH channel between u and S. This represents a
challenge: we compose a first key exchange with another one, the
second one using a signature key already used in the first.

There is a known weakness in this protocol: any privileged user
on S could use the agent as a signing oracle. Thus, in order to be
able to prove the security of the protocol, we only consider the
case where there is no such privileged user. Figure 6, in Appendix,
presents an example of a login followed by a login using the agent



forwarding. For simplicity, we abstract away some messages that
are not relevant to the security of the protocol.

In the current specification of the forwarding agent, it is impos-
sible for a server to know if the received signature was completed
locally by the user’s platform, or remotely through the agent for-
warding. As the two behaviors are different in term of trust assump-
tions, we claim that they should be distinguishable by a server. For
instance, a server should be able to reject signatures performed by
a forwarded agent, because intermediate servers are not trusted.
To this end, we assume that the signatures performed by the agent
are (possibly implicitly) tagged in a way that distinguishes between
their use in different parts of the protocol.

We consider a scenario, in which there is an unbounded number
of sessions of SSH, each with one (modified) agent forwarding, used
to provide a secure channel for a protocol P. Thanks to multiple
applications of theorems 4.3 and 4.5, we are able to break the proof of
this SSH scenario into small ones, that are very close to the proof of
a simple Diffie-Hellman key exchange. This assumes the decisional
Diffie-Hellman (DDH) hypothesis for the group, EUF-CMA for the
signature scheme and that the encryption is authenticated. P also
has to satisfy the assumptions of appendix D.3. In particular, it must
be secure w.r.t. an attacker that has access to a hash that includes the
exchanged secret key, since SSH produces such a hash. Details can
be found in [17]. Note that the scenario includes multiple sessions,
but only one forwarding. The extension would require an induction
to prove in our framework the security for any number of chained
forwardings.

8 FORMAL PROOEFS IN THE CCSA MODEL

All the above proofs are cast in the CCSA model, which is well-
suited for our purposes. In this model, formulas are first-order
formulas built over a single predicate symbol ~. Hypotheses on the
cryptographic libraries are given as a (recursive) set of formulas A,
called axioms. The protocols P, Q are folded into terms tp, tg, in
such a way that P is computationally indistinguishable from Q if
tp ~ tg is derivable from A.

This result (computational soundness in [6]) also holds when
the attacker has access to an oracle O, provided that the formulas
in A are sound with respect to such an attacker (in such a case, we
say that the formulas are O-sound). Details can be found in [17].
Therefore, we have to design axioms that are O-sound. Let us give
one such example, used in our proofs. Our definition of the tagging
predicate may (here) depend on a possibly infinite list of secrets, as
required in section 5 to verify that a session identifier belongs to
the set of honest session identifiers.

Definition 8.1. Given a name sk, a sequence of namess and a func-
tion symbol T, we define the generic axiom scheme EUF-CMAT ¢ 5
as, for any term t such that sk is only in key position:

checksign(t, pk(sk)) =
T( getmess(t),3) \/

sign(x,sk)eSt(t)

(t = sign(x, sk))

The above formula is written in a simplified form (not using
equivalences) and we do not define formally all its components. Its
intuitive meaning is: if ¢ is a valid signature with sk, then either
the signed message satisfies the predicate T (the intention is “the

message is correctly tagged”) or it is a message that has been hon-
estly produced in the past. The tagged signing oracle is defined as
previously, only adding the extra argument to the tagging function.

Definition 8.2. Given a name sk, a sequence of names s, and a

predicate T, we define the generic signing oracle O;ZZ Z 5 as follows:

O;gsnk’g(m) :=if T(m,s) then output(sign(m, sk)))

ProposITION 8.3. For any computational model in which the in-
terpretation of sign is EUF-CMA, any name sk, any sequence of names
s such that sk ¢ s, and any polynomially computable interpretation

of T, EUF-CMAT g 5 is 032"

T’Sk’g-sound.

9 CONCLUSION

In summary, we designed a method that allows to decompose a
security property of a compound protocol into security properties
of its components. This works for parallel composition, but also
sequential composition and replication: we designed a reduction
from the security of multiples copies of a protocol to a security
property of a single copy. Our method works even if the various
components share secrets and (in case of sequential composition)
when a state is passed to the other component. However, designing
oracles can be a technical challenge of our model.

We illustrated the results with the applications to key exchanges
and the SSH protocol with agent forwarding. Up to our knowledge
these applications, in the general setting that we consider, cannot be
covered by other methods. As future work, we plan to explore more
complex properties of key exchanges and study other applications
(MPC, e-voting), designing new applications of our theorems and
new axioms when needed.

This approach is also well-suited for the formal proofs in the
CCSA model. This model is designed for formal proofs that are
computationally sound, but also works for stronger attackers, who
typically can access some oracles. Though the O-soundness proofs
of the axioms, with standard cryptographic assumptions, have to
be completed by hand, the core proofs can be completely formal
and mechanizable. We plan to develop this mechanization.

In parallel, it could also be used to help proving complex pro-
tocols in EasyCrypt [7] for example, as security w.r.t. an attacker
accessing an oracle can be formalized in this tool.

Acknowledgements. We wish to thank the anonymous reviewers
for their useful comments, as well as Bogdan Warinschi and Ralf
Kiisters for interesting discussions. We are grateful for the support
by the ANR under the TECAP grant (ANR-17-CE39-0004-01) and
by the Institut Universitaire Francais.

REFERENCES

[1] [n. d.]. ISO/IEC 9798-3:2019, IT Security techniques — Entity authentication —
Part 3: Mechanisms using digital signature techniques. https://www.iso.org/
standard/67115.html

[2] M. Arapinis, V. Cheval, and S. Delaune. 2012. Verifying Privacy-Type Properties
in a Modular Way. In 2012 IEEE 25th Computer Security Foundations Symposium.
95-109. https://doi.org/10.1109/CSF.2012.16

[3] Michael Backes, Markus Diirmuth, Dennis Hofheinz, and Ralf Kiisters. 2008.
Conditional reactive simulatability. Int. J. Inf. Sec. 7, 2 (2008), 155-169.

[4] Michael Backes, Birgit Pfitzmann, and Michael Waidner. 2007. The Reactive
Simulatability (RSIM) Framework for Asynchronous Systems. Inf. Comput. 205,
12 (Dec. 2007), 1685-1720. https://doi.org/10.1016/j.ic.2007.05.002


https://www.iso.org/standard/67115.html
https://www.iso.org/standard/67115.html
https://doi.org/10.1109/CSF.2012.16
https://doi.org/10.1016/j.ic.2007.05.002

[5] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. 2018. Formal Analysis of

Vote Privacy Using Computationally Complete Symbolic Attacker. In Computer

Security - 23rd European Symposium on Research in Computer Security, ESORICS

2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part II. 350-372. https:

//doi.org/10.1007/978-3-319-98989-1_18

Gergei Bana and Hubert Comon-Lundh. 2014. A Computationally Complete

Symbolic Attacker for Equivalence Properties. In Proceedings of the 21st ACM

Conference on Computer and Communications Security (CCS’14), Gail-Joon Ahn,

Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, Arizona, USA, 609-620.

https://doi.org/10.1145/2660267.2660276

[7] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella-Béguelin.
2011. Computer-Aided Security Proofs for the Working Cryptographer. In Ad-
vances in Cryptology — CRYPTO 2011 (Lecture Notes in Computer Science), Vol. 6841.
Springer, Heidelberg, 71-90.

[8] Bruno Blanchet. 2007. CryptoVerif: A Computationally Sound Mechanized Prover
for Cryptographic Protocols. In Dagstuhl seminar "Formal Protocol Verification
Applied".

[9] Bruno Blanchet. 2018. Composition Theorems for CryptoVerif and Application
to TLS 1.3. In 31st IEEE Computer Security Foundations Symposium (CSF’18). IEEE
Computer Society, Oxford, UK, 16-30.

[10] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and

Markulf Kohlweiss. 2018. State Separation for Code-Based Game-Playing Proofs.

In ASIACRYPT (3) (Lecture Notes in Computer Science), Vol. 11274. Springer, 222—

249.

C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. 2013. Less

is more: relaxed yet composable security notions for key exchange. International

Journal of Information Security 12, 4 (Aug. 2013), 267-297. https://doi.org/10.

1007/510207-013-0192-y

Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.

2011. Composability of Bellare-rogaway Key Exchange Protocols. In Proceedings

of the 18th ACM Conference on Computer and Communications Security (CCS ’11).

ACM, New York, NY, USA, 51-62. https://doi.org/10.1145/2046707.2046716

David Cadé and Bruno Blanchet. 2013. From Computationally-Proved Protocol

Specifications to Implementations and Application to SSH. Journal of Wireless

Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA) 4,

1 (March 2013), 4-31.

[14] Jan Camenisch, Stephan Krenn, Ralf Kiisters, and Daniel Rausch. 2019. iUC:

Flexible Universal Composability Made Simple. Technical Report.

Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. http://eprint.iacr.org/2000/067

[16] Ran Canetti and Tal Rabin. 2003. Universal Composition with Joint State. In

Advances in Cryptology - CRYPTO 2003 (Lecture Notes in Computer Science), Dan

Boneh (Ed.). Springer Berlin Heidelberg, 265-281.

Hubert Comon, Charlie Jacomme, and Guillaume Scerri. 2020. Oracle Simulation:

a Technique for Protocol Composition with Long Term Shared Secrets - long

version. https://hal.inria.fr/hal-02913866

Hubert Comon and Adrien Koutsos. 2017. Formal Computational Unlinka-

bility Proofs of RFID Protocols. In Proceedings of the 30th IEEE Computer Se-

curity Foundations Symposium (CSF’17), Boris Kopf and Steve Chong (Eds.).

IEEE Computer Society Press, Santa Barbara, California, USA, 100-114. https:

//doi.org/10.1109/CSF.2017.9

Véronique Cortier and Stéphanie Delaune. 2009. A method for proving observa-

tional equivalence. In 2009 22nd IEEE Computer Security Foundations Symposium.

IEEE, 266-276.

[20] Cas Cremers. 2008. On the Protocol Composition Logic PCL. In Proceedings of the
2008 ACM Symposium on Information, Computer and Communications Security
(ASIACCS '08). ACM, New York, NY, USA, 66-76. https://doi.org/10.1145/1368310.
1368324 event-place: Tokyo, Japan.

[21] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Mathieu

Turuani. 2005. Probabilistic Polynomial-Time Semantics for a Protocol Security

Logic. In Automata, Languages and Programming (Lecture Notes in Computer

Science), Luis Caires, Giuseppe F. Italiano, Luis Monteiro, Catuscia Palamidessi,

and Moti Yung (Eds.). Springer Berlin Heidelberg, 16-29.

Nancy Durgin, John Mitchell, and Dusko Pavlovic. 2003. A Compositional Logic

for Proving Security Properties of Protocols. . Comput. Secur. 11, 4 (July 2003),

677-721. http://dl.acm.org/citation.cfm?id=959088.959095

Marc Fischlin and Felix Giinther. 2014. Multi-Stage Key Exchange and the Case

of Google’s QUIC Protocol. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,

1193-1204. https://doi.org/10.1145/2660267.2660308 event-place: Scottsdale,

Arizona, USA.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature

Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17,

2 (1988), 281-308.

Dennis Hofheinz and Victor Shoup. 2015. GNUC: A New Universal Composability

Framework. Journal of Cryptology 28, 3 (July 2015), 423-508. https://doi.org/10.

1007/500145-013-9160-y

l6

=

[11

[12

[13

(15

(17

[18

[19

[22

[23

[24

[25

[26

Ralf Kusters and Daniel Rausch. 2017. A Framework for Universally Composable
Diffie-Hellman Key Exchange. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, San Jose, CA, USA, 881-900. https://doi.org/10.1109/SP.2017.63
Ralf Kiisters and Max Tuengerthal. 2011. Composition Theorems Without Pre-
established Session Identifiers. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS ’11). ACM, New York, NY, USA,
41-50. https://doi.org/10.1145/2046707.2046715 event-place: Chicago, Illinois,
USA.

[28] Ueli Maurer. 2011. Constructive Cryptography - A New Paradigm for Security
Definitions and Proofs. In TOSCA (Lecture Notes in Computer Science), Vol. 6993.
Springer, 33-56.

Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thomson.
2011. On the Joint Security of Encryption and Signature, Revisited. In Advances
in Cryptology — ASIACRYPT 2011 (Lecture Notes in Computer Science), Dong Hoon
Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg, 161-178.

Guillaume Scerri and Stanley-Oakes Ryan. 2016. Analysis of Key Wrapping
APIs: Generic Policies, Computational Security. IEEE Computer Society, 281-295.
https://doi.org/10.1109/CSF.2016.27

Stephen C. Williams. 2011. Analysis of the SSH Key Exchange Protocol. In
Cryptography and Coding (Lecture Notes in Computer Science), Liqun Chen (Ed.).
Springer Berlin Heidelberg, 356-374.

[32] Tatu Ylonen and Chris Lonvick. [n. d.]. The Secure Shell (SSH) Transport Layer
Protocol. https://tools.ietf.org/html/rfc4253

[27

™~
29,

[30

[31

A STATELESS ORACLES

Definition A.1 ((Stateless) Oracle). An oracle O is a triple of func-
tions that have the following inputs

e a sequence of bit-strings w € ({0, 1}*)" and two bit-strings
r, s: the query, consisting of an input query w, an input tag r,
an input key s.

e arandom tape p; for the (secret) random values

e the security parameter 5

e arandom tape po for the oracle’s coins.

The first function assigns to each w, s, r an integer n(w,s,r) € N
and is assumed injective. n(w, s, r) is used to extract a substring
e1(n(w, s, r),n, po) from pg, which is uniquely determined by the
input. We assume that the length of the substring extracted by e;
only depends on 7, and substrings extracted with e; are disjoint for
different values of n.

The second function ey assigns to each s a sequence p(s) of
natural numbers, that are used to extract secret values from ps:
e2(p(s), n, ps) is a sequence of bit-strings. It is also assumed to be
injective.

The third function takes , w, r, s, e1(n(w, r), 11, po), €2(0(s), 1, ps)
as input and returns a result (a bit-string) or a failure message.

B SIMULATABILITY

For technical reasons, we need to ensure that simulator’s oracle calls
and attacker’s oracle calls do not use shared randomness. We thus
assume, w.l.o.g., that the random handles r of simulator’s queries
are prefixed by 1. This ensures that, as long as adversaries only
make oracle calls prefixed by 0 (this can be assumed w.l.o.g. since
it only constrains the part of the oracle’s random tape where the
randomness is drawn.) the oracle randomness used by the simulator
is not used by the adversary. This is illustrated in example B.3.

From now on, we replace the definition of simulatability by the
following one:

Definition B.1. Given a cryptographic library My, a sequence
of names n, an oracle O and a protocol P, we say that vn.P is O-
simulatable if the support of O is n and there is a PPTOM A9
(using queries prefixed by 0) such that, for every ¢ € {0,1}*, for


https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1145/2660267.2660276
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
http://eprint.iacr.org/2000/067
https://hal.inria.fr/hal-02913866
https://doi.org/10.1109/CSF.2017.9
https://doi.org/10.1109/CSF.2017.9
https://doi.org/10.1145/1368310.1368324
https://doi.org/10.1145/1368310.1368324
http://dl.acm.org/citation.cfm?id=959088.959095
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1109/SP.2017.63
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1109/CSF.2016.27
https://tools.ietf.org/html/rfc4253

PLATFORM SERVER 1

g%

“1

SERVER 2

let b = hash(g®, gbi, g%%1), let k=g®bi ‘

g%, pk(sks), sign(h, sks)

enc(sign(h, skp), k)

C Successful login of the user on Server 1

enc(hy, k)

let hy = hash(g¢t, g%, g¢idi), let ky = g%

g%, pk(skr), sign(ha, skT)

enc(sign((hy, “forwarded”), skp), k)

enc(sign((hy, “forwarded”), skp), k)

Figure 6: SSH with agent forwarding

every v € ({0, 137l for every m > 1, for every PPTOM 89
(using random handles prefixed by 1),

Ppsspryspryopol ACPPON(py,, 03, 17) = ¢ | [R]], = B}
= Ppepr.pryopolOp(ps, 05) = c | [l =T}
where
$%.1 = 97 Op(ps. 67)
Do = B AP pr,, 64 m)
elic+1 = Qlic’BO(ps’pO)(prz’ 1, ¢Ii<+1)
for 0 < k < mand ¢g = 0, 6 = BOPs:P0)(p,,. 1, 0).

The machine A can be seen as the simulator, while 8 is an
adversary that computes the inputs: the definition states that there
is a simulator, independently of the adversary.

This new definition of simulatability is equivalent to the one
based on definition 3.1, as shown in proposition B.2. Alternative
definitions for simulatability are discussed in appendix B.3.

ProrosITION B.2. Given an oracle O with support n, a crypto-
graphic library Mf , protocols P, Q such that N(P)NN(Q) C n, then,
for any PPTOM A9, vai.P is O-simulatable with f[g if and only if
for every PPTOM DO’OP’OQ,for everyn, everyv € ({0, 1yl c e
{0.1}%,

BpeprpotDO 0P 0 pr. 17) = ¢ | [l =T}
= Ppr.prpo (DIAFI? 02 (pr. 17) = ¢ | [, =T}

The above characterization is the one we will use inside the
proofs, where the extra protocol Q will be the context. The defini-
tion 3.1 was implicitly extended to support a distinguisher with an
additional protocol oracle.

B.1 A detailed example of protocol simulation

The purpose of the following example is to illustrate the definitions
and also to show the need for disjointness of the oracle tags of the
attacker from the oracle tags of the simulator.

Example B.3. We take a more formal view on the example from
example 3.3.

We let O be the encryption-decryption oracle: it expects an input
("dec",m) or ("enc", m), akey s = 1 (only one encryption key is
considered), an input tag ¢ and a security parameter 1 and returns

e enc(m, r, k) if the query is prefixed by "enc", k is the secret
value extracted from ps corresponding to the key 1, r is
drawn from p and associated with the tag t (via e;).

o dec(m, k) if the query is prefixed by "dec", k is the secret
value extracted from ps corresponding to the key 1

e an error message otherwise (either the primitives fail or the
query does not have the expected format).

The goal is to show that vk.A is O-simulatable. (So, here, B is
useless, and we let P be A).
Op is then defined as follows (according to the section 2.5):

e Oninput wi, with an empty history, it outputs [[enc(n, r, k)]]zs
and writes w; on the history tape.
e On input wy with a non empty history tape, it outputs ok if

[[dec(x, k)]]g;x'_w2 = [[{n, 1)]];7,5 and an error otherwise.

The machine &Z(O(prl, 0, n) is then defined as follows:

o If0 = {m}
(1) A draws « (for the value of n) from p,, and draws ¢ from
Pry
(2) calls O with (("enc", a), 1, t) and gets back the bitstring

Lz (k] . ) .
[[enc(n,r, z)]]Zr1 ,p([;[ Ios . The interpretation of k is indeed

fixed at once since it belongs to the “shared” names bounded
by v.
r],x»—>a,z|—>[[k]];7,s

(3) outputs [lenc(x, r, 2)]l 5,

o If 6 = (m1, my),

(1) calls O with ({("dec", mp), 1, —) and gets back the bitstring
w = [dec(y, z)]]y'_)mz’Z'_)ukuzS or an error message.

(2) checks whether w = [(n, l>]]7’r1' If it is the case, then
outputs ok.

Now, consider an arbitrary PPTOM 8 o,

. Lz [k .
. ¢% = [enc(n, x, z)]];],rx'_)s1 =1kl where s; is the random-

ness used by O when queried with [[¢]] P (note: we will see



that it does matter to be very precise here; we cannot simply
claim that the value of x is just a randomness drawn by O).
. ¢§ = [enc(n,r, k)]]gs
. 01.1 = wj, an arbitrary bit-string, computed by 8 . using the
oracle O, gzﬁ} and the random tape py,.

o ¢ = ¢l ok if [dec(y, z)]]y’_)wl’z'_’llk]]zs = [[(n,l)]]zrl and
an error otherwise

o ¢2 = ¢2 ok if [[dec(x, k)] "™ = [(n, 1]}, and an error
otherwise

A O-simulates vk P iff, for every v = [k]l,,,

B 1dec(u 250 = G ), )
B propo (Tdecx OIS = [(n. DT, )

First, the distributions of ¢% and ¢f are identical. ¢} depends
on p, and pp, while ¢f depends on ps only. The distributions of
¢%, [{n, l>]],0r1 and ¢f, [{n. 1)]p, are also identical.

Now the distributions wy = BO((ﬁi, pr,), [{n, 1>]]Pr1 and wy =
BO(QS%, pry) [{n, D1 p, are equal if the randomness used by B are
disjoint from the randomnesses used in g{)%, ¢% This is why there is
an assumption that p,, and p;, are disjoint and why it should be
the case that the randomnesses used in the oracle queries of B are
distinct from the randomnesses used in the oracle queries of A.
This can be ensured by the disjointness of tags used by A and 8
respectively.

With these assumptions, we get the identity of the distributions
of dec(wi, ), [{n, )], and dec(wz, v), [{n, 1)]p,, hence the de-
sired result.

Without these assumptions (for instance non-disjointness of tags
used by B, A), B can query O with a random input and a random
tag, say n’,t’. As above, we let s; be the random value drawn by O
corresponding to the tag t’. Then P{[[n]l o, = n’Allr]lp, = s1} = 22%,
while

B{[nllp,, =’ AllFllp, =1} =

HEDy, = 1L, ¥ Wt # 1D, AL, =1 150))

= 77 (2 - 37)
In other words, the collision is more likely to occur since it can result
from either a collision in the tags or a collision in the randomness
corresponding to different tags.

B.2 Prefixed model

As demonstrated in ther previous example, it is necessary to as-
sume that oracle randomness used by the simulator queries and
the attacker queries are disjoint. The simplest way of ensuring this
is to force all tags of oracle calls to be prefixed. We show here that
this assumption can be made without loss of generality.

Definition B.4. Given a PPTOM A? and a constant ¢. We define
o
‘ﬂpre f—c
form w, r, s are replaced with calls of the form W, ¢ - r, s, where the

- denotes the concatenation of bit-strings.

as a copy of A, except that all calls to the oracle of the

The following lemma shows that we can, w.l.o.g., consider mod-
els, in which the tags are prefixed. It uses the formal definition of a
stateless oracle of Appendix A.

Lemma B.5. For any non-empty constant ¢ and any PPTOM A9,
we haves

Ppe.pr.po {y[O(ps,po)(pr, 1M =1}

- O(ps.po) -
- PPSsPrsPO {ﬂpref—co (Pr, ]’7) = l}l

Proor. We fix a constant ¢, for any oracle O (with functions
n, e1, e2), we define Op,.o¢_. (With mapping function n’, ef, e;) the
copy of O such that:

n’(w,s,r) = n(w,s, clr)

n is injective by definition, so n’ is injective too. For any v € {0, 1}7,
as all extractions of e; are unique for each value of n and their length
only depends on 1, we have for any w,r, s

Ppo{el(n(w9 S, r)’ 7, pO) = U}
= Ppo {e{(n/(w’ S, r)’ B PO) = U}
This implies that for any input, O and O, Will produce the

same output distribution. So AO and AOpref— will produce the
same distributions for any input. We conclude by remarking that

o ref-c o
ATpref andﬂpref_c

An immediate consequence of this Lemma is that for all indis-
tinguishability results, we can, without loss of generality, constrain
attackers to only use prefixed oracle calls.

In particular it implies equivalence between indistinguishabil-
ity in a computational model and indistinguishability for prefixed
distinguishers in the prefixed computational model.

behaves the same by construction. O

B.3 Alternative notions of simulatability

First, let us note that our notion of simulatability assumes that
models are prefixed. As demonstrated previously this is necessary in
order to get an achievable notion of simulatability. We will therefore
not consider models that are not prefixed.

We may consider variants of simulatability, depending on the
order of the quantifiers and sharing of randomness between simu-
lator and distinguisher. We define simulatability as the existence
of a simulator that works for all distinguishers. In other words our
ordering of quantifier is:

3A (pr, VD(pr,)

In a prefixed model, we believe that switching the quantifiers
lead to the same notion:

A (pr, WD (pr,) & YD(pr,)3A (pr,)

We do not provide the proof, but the intuition is that there exists
a “universal” distinguisher, namely the PPTOM D, which performs
any possible queries with uniform probability. Now, considering any
other distinguisher D’ as the simulator A9 for D has to provide
the exact same distribution as the protocol for each query of D, as
D performs all possible queries (with very small probability), A9
will also be a correct simulator for D’.

Another alternative is to allow the simulator and the distin-
guisher to share the same randomness. Then, Eﬂo(pr)VD(pr)
seems to provide an unachievable definition. Indeed, if the simu-
lator is not allowed to use private randomness while the protocol
is, the simulator cannot mimick the probabilistic behavior of the
protocol.



The last possibility however seems to offer an alternative defini-
tion for simulatability:

VD (pr)3A° (pr)

This seems to be a weaker definition than ours as the choices of the
simulator can depend on the ones of the distinguisher. It may sim-
plify (slightly) the proofs for the main theorem, but it would create
issues for the unbounded replication as it would break uniformity
of reductions (since the runtime of the simulator may now depend
on the environment it is running in).

C PROOF OF THEOREM 4.3

We first generalize theorem 4.3, so that it is more easily usable.
Notably, rather than restricting the channels of the protocols and
the context to be disjoint, we allow to define a renaming between
channels.

TueoreM C.1. LetC[_1,...,_p]| be a context. Let Py, . .., Py,
Q1,...,0n be protocols, and let o : C(Py,...,Pp) > C such that
ClIP1ll ... IPn, CIQ1I - . - 1Qn, C[Py, . ..., Pac], ClQ10, . . ., Qno]
are protocols. Given a cryptographic library MY, an oracle O, with
72 NOC)NNPL...,Py,01,...,0n), if vi.C is O-simulatable
and Py||...||Pn =0 O1ll - - - ||On, then

Cl[Pyo,...,Ppo] =p ClQ10,...,0n0]

C.1 Oracle simulation

We first show that O-simulation, whose definition implies the iden-
tical distributions of two messages produced either by te simulator
of by the oracle, implies the equality of distributions of message
sequences produced by either the oracle or the simulator.

For any sequence of names n and parameter 7, we denote D% =
{IIE]]Zq |ps € {0,1}“} the set of possible interpretations of n. We
reuse the notations of definition B.1.

Lemma C.2. Given a cryptographic library Mg, a sequence of
names n, an oracle O with support n and a protocol P, that is O-
simulatable with AC, we have, for every x,y,c,ra,rg € {0,1}*,

— n o .
every U € D, for everym > 1, for every PPTOM 8 (using tags
prefixed by 1):

Pps’Prl »PrZ’PO{erln =X, ¢}n = y
|71}, =2.p§ = rg. pr, = r2}
= Pps,prl,prz,po{erzn =X ¢m=7
|[713, = .05 = rs. pr, = r2}

where we split po into pg W pg such that O called by B only

accesses pg and O called by A only accesses pg (which is possible
thanks to the distinct prefixes).

The proof of this lemma can be found in [17].

We now prove that definition B.1 implies definition 3.1, i.e that
the simulatability implies that we can replace a protocol oracle by
its simulator.

Lemma C.3. Given an oracle O (with support n), a cryptographic
library Mf, a sequence of names n , P,Q protocols, s.t vi.P is O-

simulatable with ﬂg and N(P) N N(Q) C n then, for every PPTOM

pO-0p,

{0,1}*,
Ppy.propo{DP:000(p,, 1M) = ¢ | ]}, =0}

=Pp,.p,.po i DIAG19-0¢(p,, 17) = ¢ | [7]}), = T}

The idea is to use the definition of O-simulatablity, using a PP-
TOM B9 that behaves exactly as D when it computes the next
oracle queries from the previous answers. The difficulty is that D
may call the oracle OQ, while B has no access to this oracle. We
know however that shared names are included in n, whose sam-
pling can be fixed at once (thanks to the definition of O-simulation).
The other randomness in Q can be drawn by 8 from p,, without
changing the distribution of Og’s replies.

Note that the Lemma also implies that:

PPSsPrsPO {DO’OP’OQ(pV’ 17) = c}
= Pps’Pr’PO{D[ﬂ}(Z’)]O’OQ(pr’ 1,7) = C}

Oo (prefixed by 1), every n, everyv € Dg and every c €

Proor. Fix n and the interpretation [[ﬁ]]zs =7.

Given D, we let D,,, be the machine that behaves as D, however
halting after m calls to Op (or when D halts if this occurs before
the mth call) and returning the last query to Op.

We have that D,, first executes D,,_1, then performs the oracle
call Op(ps, Om—1), getting upm—1 and performs the computation of
the next oracle call v, (if D makes another oracle call), updates
the history 6., := (v1,...,vm) and returns vy, if there is one or
the output of D otherwise. Dm[ﬂg] first executes Z)m,l[ﬂfo,],
then performs the computation .ﬂg(Mf, pri»0;,_;) of up,, com-
putes the next oracle call v}, (if one is performed), updates 6}, :=
(v1,...,vy,) and outputs either v, of the output of D.

We wish to use the definition of O-simulation in order to con-
clude. However, we cannot directly use the O-simulation, as D has
access to an extra oracle OQ.

Part1
We first prove that, assuming .?(g is a simulator of Op:

Ppe.prpo i DO (pr, 1) = c}
= Ppy.prpol DIAZIO (pr, 1) = ¢}
This is a straightforward consequence of lemma C.2. Writing re-
spectively p%(c) = Pps,pr,po{ﬂo’o”(pr, 17) = ¢} and pf(c) =
Pps.pr.po {D[ﬂg]o(pr, 17) = ¢}, Using py,, pr, asin definition 3.1,
we have

pile) = Z Pps.prpo i DO (pr,17) =
rg,r
| (71}, p5. pr,) = (@.rg.r2)}
XPpq.pr.po (Al PG Pr) = (@78, 72)}
JHONE Z Pps.prpo t DIAZ 1O (pr. 1) = ¢
rg,r
| (7). p5. pry) = (B.rg. 12)}
P o
XPp,.prpo T}, =, p5 = rg.pr, = r2}
We let

py(rg.ra.0,¢) = Pp,.pr.pol DO OF (pr, 1) = ¢
| ([Iﬁ]]ZS,pg»prz) = (v,rg,12)}



and

Pirg.r2,0,¢) = Bp, . po {DIAZ(pr, 17) = ¢
| (715, PG pr,) = (@78, 72)}

We use definition B.1 with Bo(prz, 1, ¢) as the machine that
simulates Dy, for m = |¢| and using ¢ instead of querying the
oracle. Let us define ¢!, 6%, for i = 1,2 as in definition B.1. Note
that with the definition of D, 8B uses prefixes for oracle calls, disjoint
from those used in Ap, hence randomness used for oracle calls in A
and B are disjoint. Let v be the last message of 0%,. By definition
of D and B we have v}, = vy, and v2, = v},. Choosing m such
that O makes less than m oracle calls, we have

pé(rB’r%ﬁ’ C) = . .
Z;? s.t. xm=c,7 Pps,prl,p’?,poz{;@;n =X, ¢£n =y
[ ([nllp,. pgs Pry) = (@, 18, 12)}

lemma C.2 yields for all rg, ro, ¢ that pg(rg, ry,C) = p;(rg, o, C),
which concludes part 1.

Part 2
We now prove that:

VD. Py, p,.po DO (pr, 1) = c}
=Pps.prpo {DIAO(pr, 17) = c}
= 1)
VD. Pp,.pr.po (D999 (p, 17) = c}
=Pp,.p,.po {DIA190¢(p, 17) = c}

We are thus going to show that, with the interpretation of n
fixed, we can simulate O inside some D’ by sampling inside p,
instead of ps. However, both computations of Op and Og depend
on ps. This is where we need the assumptions that 7 contains the
shared secrets between P and Q, as well as the splitting of p,.

For any machine MO-00 e let [M]g be the machine that
executes M, simulating OQ for a fixed value v of nn. The machine
samples the names appearing in Q and not in 7 and hard codes the
interpretation of 7.

More precisely, we write Og (ps, 0) := Og((ps,» Ps;» Ps, )» 0) Where
Ps, is used for the sampling of 11, ps, for the sampling of other names
in Q, and ps, for the reminder.

Then [M]g(pr, 17) is the machine that:

e Splits p, into two infinite and disjoints psg, prm and initial-
izes an extra tape 0 to zero.

e Simulates M(p,p1, 17) but every time M calls Op with in-
put u, the machine adds u to 0, and produces the output of
0o((©, pro.0).0).

Such a machine runs in deterministic polynomial time (w.r.t 7).
For any machine MO:00.0p , we similarly define [M]ﬁo -Op . Now,
we have that, for any c, by letting, for any X and U, P;Z(U) =

Px{U = c|[7ll}, = o):

pe? (DO-0p(psy-Ps1:P52):00(Pso-Psi-Ps2) (., 17T))

PssPrsPO

=1 By, (D007 Psvpo P 00 bsosb Oy, 7))

_2 :;EP ) po(Z)OvoP(Pso,O,Psz),OQ(Pso,Pslvo)(pr’1’7))
s12Ps32Prs

_3 pC.ov 0,0p(9,0,ps,),00(v, ps, ,0) n

= Ppmpsz,pr,po(ﬂ 2% o (py, 1))

_4 pCU

0,0p(90,0,p5),00(v,ps0,0
B igpsprpopo (DO OP O 0P:100(p50.0p,. 17))

0,0p(ps -
=5 P57, (D120 (o, 1)) (i)

Since
(1) Og does not access ps,
(2) Op does not access ps,
(3) We are sampling under the assumption that [[ﬁ]]Zs =7, 1ie,
Ps, is equal to .
(4) Renaming of tapes
(5) By construction

And we also have similarly that, for any c:

Py prpol DIAGI-O0(p,, 17) = ¢ | 7]}, =}
= Ppoprpo IDIAZNE (pr, 17) = | [7]]}, = B} (i)

g»oP(Ps)(pr’ lr]) and

[D[ﬂg] j]g (pr,17), and using (ii) and (iii), we can conclude by
transitivity. We conclude the proof of the lemma by putting Part 1
and Part 2 together.

By applying the left-handside of (1) to [D]

[m]

C.2 Proof of the Theorem
Recall that we denote C the context C, in which each _i is replaced
with out(c;, 0).0, where c; is a channel name and 0 is a public value.

For any protocols P, Q, we denote AdV;EQ(t) the advantage (c.f.
definition 2.4) for the PPTOM A (with potential access to an oracle)
with execution time bounded by ¢

TueoreM C.1. LetC[_1,...,_p]| be a context. Let Py, . .., Pp,
Q1,...,0n be protocols, and let o : C(P1,...,Pn) — C such that

ClIPl. . \IPn, CIQ1I - - - Qn, CIP1G, . . ., Pral, ClQ10, . .., Qnoa]
are protocols. Given a cryptographic library M/ an oracle O, with
n2 NCONNPy,...,Pp,01,...,0n), if va.C is O-simulatable
and Pi|| ... [|Pn =0 Qill... ||Qn, then

C[Pio,...,Pyo] =p C[Q10,...,0n0]
Proor. Let A be an attacker against

C[Pio,...,Pyo] =p C[Q10,..
We first build an attacker against

ClIPAII .. IPa =0 CIQ4I. .. 1Qn-
OOy -on

- Qno].

Let us construct 8>
P;, or, for every i, R; = Q;. B9-05.0Ry----ORn initially sets vari-
ables c1, .. ., cp to 0 (intuitively, c¢; records which processes have
been triggered) and sets x to the empty list. It then simulates
AQ-Ocirio....Rnol but, each interaction with Oc[R, o
the corresponding request (c, m) is replaced with:

e if there exist i such that ¢; = 1 and ¢ € C(R;0) then
- query O, with (co™,m)

Orn with either for every i, R; =

R,o] and

.....



- if Og, returns 1, then, if contexts C; and C; are such
that C[_1,...,_pn] = C1[_j; C2], it adds to X the channels
C(Cy). (This corresponds to the semantics of sequential
composition: an error message disables the continuation).

— else the answer (¢’, m’) is changed (¢’o, m’) (and the sim-
ulation goes on)

e elseifc € C(C) and ¢ ¢ X then

- query O with (c, m)

- if OE answers T on channel y;, set¢; = 1

— else continue with the reply of Oz

This new attacker is basically simply handling the scheduling of
the protocols, using the signals raised in the context to synchronize
everything. The condition that there exist i such that¢; = 1and ¢ €
C(R;) is always satisfied by a unique i, otherwise C[P;0, ..., Pyo]
or C[Q10,...,Qn0] would not be well formed.

The execution time of B then only depends on the number of
channels in C, the size of the channel substitution o, the number of
protocols n in addition to the cost of simulating A. Hence if ¢ is the
runtime of A, there exists ps such that the runtime of 8 is bounded
(uniformly in C, Py, ..., Py, Q1,...Qn) by ps(n, t, |C|, |o]):

AdyClPr - Pal=ClQ1, .. Q"](t)
<AdVP1” APr=0Qx .. HQ"(PS(” t,1Cl, o))
%

Now, with the fact that v1.C is O simulatable, we have a simulator
A2 such that, thanks to lemma C.3, B[f%)]O’OR behaves exactly

as 80-0c.Or
We have, for pc the polynomial bound on the runtime of Az,
by definition 3.1,

AdyPU I IPA=0u - 10n

8%
< Advpl[llﬂ I1Pn=01]l...11Qn (q(Pc(t) + t))
6
and finally,
Adv gllplo', no|=C[Qi0,.. ’Qno'l(t)

Pi||...||Pp= ... 10On
< Adv - IPr= Q1] 11Q (q(pc o ps(n, t,|Cl, o))

B[ﬂg]o
+ps(n, t,|Cl, o))

D PROOFS WITH KEY CONFIRMATIONS

D.1 Key exchange and protocol simulatability

We modify slightly the hypotheses of sections 5.2.1 and 5.2.2 to
reflect the fact that we now consider the key confirmation to be
part of the continuation:

(1) Vﬁ.in(x).ll(x);PI(x), in(x).Rl(x);PR(x), in(x).Il(x); QI(x),
in(x).R1(x); OR(x) are Op, o simulatable.

() vp. I'SN 19(sid?, id!); - lf xI lszdR then

Isid ~
Out(<w>)
else Il(xI);J_

”isNRg(lsidf,idR) i xfd Isid] then

OU'C((l,J))
else Rll(xR); 1
is Oy, simulatable.

D.2 Security of the protocol

Compared to section 5.2.3, the continuation must be secure even in
the presence of the messages produced during the key confirmation:

PN D) PR (R): PR () =0, 0

=N QF DR} (xR); QR ()

We can once again split this goal into a single session proof using
theorem 4.7. We remark that to prove the security of the single
session, we can further reduce the proof by using an oracle that
may simulate I! and R!, as the security of P should not depend on
the messages of the key confirmation.

k

D.3 Security of the key exchange

We proceed in a similar way as in section 5.2.4 and we use the same
notations. Let us define

KE°[ 4, o] := I°(sidl, id"y; 1 |R(IsidR, idR); ,
The following Hypothesis are then suitable:
(1) Vi < N, visid!, id!, IsidR, idR.
KE%[out(xT), out(xF)]|lout((IsidR, Isidl)) is Or-simulatable
(2) 5 is disjoint of the support of Op o.
(3) KE°[Dr, DR =0, .0p. o KE®[CL.R,Cr.1]

where Dy := ifx;;.d ¢ 57 then X1(xX)
else out((xX lsde X d>)
Cx,y == |if xl id lsde then out((k, lsidg(,xl)gid))
else if x;( ¢ §Y then Xl(xX); out(L)
else out((xX lswl0 S X d))
The indistinguishability expresses that, 1f the two singled out
parties are partnered, i.e. xlIsid lszd or xlSl lszd , then we
test the real-or-random of the key. Else a party must always be
partnered with some honest session, i.e xlsl
When two honest parties are partnered, but are not the singled out

parties, they leak their states.

és s never occurs.



	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related Works

	2 Protocols and Indistinguishability
	2.1 Syntax and semantics of terms
	2.2 Syntax of the protocols
	2.3 Semantics of the protocols
	2.4 Stateless oracle machines
	2.5 Computational indistinguishability

	3 Simulatability
	3.1 Protocol simulation
	3.2 Generic oracles for tagged protocols

	4 Main Composition Theorems
	4.1 Composition without state passing
	4.2 Composition with state passing
	4.3 Unbounded replication

	5 Application to Key Exchanges
	5.1 Our model of key exchange
	5.2 Proofs of composed key exchange security

	6 Basic Diffie-Hellman Key Exchange
	7 Extension to Key Confirmations
	7.1 Application to SSH

	8 Formal Proofs in the CCSA Model
	9 Conclusion
	References
	A Stateless Oracles
	B Simulatability
	B.1 A detailed example of protocol simulation
	B.2 Prefixed model
	B.3 Alternative notions of simulatability

	C Proof of theorem 4.3
	C.1 Oracle simulation
	C.2 Proof of the Theorem

	D Proofs with key confirmations
	D.1 Key exchange and protocol simulatability
	D.2 Security of the protocol
	D.3 Security of the key exchange


