
Oracle simulation: a technique for protocol composition with
long term shared secrets

Hubert Comon1, Charlie Jacomme2, and Guillaume Scerri3

1,2LSV, CNRS & ENS Paris-Saclay & Inria & Université Paris-Saclay
3Université Versailles Saint-Quentin & Inria

August 1, 2020

Abstract

We provide a composition framework together with a variety of composition theorems
allowing to split the security proof of an unbounded number of sessions of a compound
protocol into simpler goals. While many proof techniques could be used to prove the
subgoals, our model is particularly well suited to the Computationally Complete Symbolic
Attacker (CCSA) model.

We address both sequential and parallel composition, with state passing and long term
shared secrets between the protocols. We also provide with tools to reduce multi-session
security to single session security, with respect to a stronger attacker. As a consequence,
our framework allows, for the first time, to perform proofs in the CCSA model for an
unbounded number of sessions.

To this end, we introduce the notion of O-simulation: a simulation by a machine
that has access to an oracle O. Carefully managing the access to long term secrets, we
can reduce the security of a composed protocol, for instance P‖Q, to the security of P
(resp. Q), with respect to an attacker simulating Q (resp. P) using an oracle O. As
demonstrated by our case studies the oracle is most of the time quite generic and simple.

These results yield simple formal proofs of composed protocols, such as multiple ses-
sions of key exchanges, together with multiple sessions of protocols using the exchanged
keys, even when all the parts share long terms secrets (e.g. signing keys). We also provide
with a concrete application to the SSH protocol with (a modified) forwarding agent, a
complex case of long term shared secrets, which we formally prove secure.

Contents

I The Framework 3

1 Introduction 3
1.1 Our contributions . 4
1.2 Related Works . 5

1

2 Protocols and Indistinguishability 7
2.1 Syntax and semantics of terms . 7
2.2 Syntax of the protocols . 8
2.3 Semantics of the protocols . 9
2.4 Stateless Oracle Machines . 11
2.5 Computational indistinguishability . 13

3 Simulatability 13
3.1 Protocol Simulation . 14
3.2 Generic Oracles for Tagged Protocols . 23

4 Main Composition Theorems 25
4.1 Composition without State Passing . 26
4.2 Composition with State Passing . 30
4.3 Unbounded Replication . 32

5 Unbounded Sequential Replication 34

II Applications to Key Exchange 34

6 Application to Key Exchanges 34
6.1 Our Model of Key Exchange . 35
6.2 Proofs of Composed Key Exchange Security . 35

7 Basic Diffie-Hellman Key Exchange 38

8 Extension to Key Confirmations 40
8.1 Proofs with Key Confirmations . 41

9 Application to SSH 42
9.1 The SSH Protocol . 43
9.2 Security of SSH . 44
9.3 SSH with Forwarding Agent . 46

III Composition in the CCSA logic 48

10 Oracles in the CCSA Logic 48
10.1 Syntax and Semantics . 49
10.2 Oracle Soundness . 49

11 Computational Soundness of the logic 52
11.1 Protocols . 52
11.2 Introduction of attacker’s functions . 53

12 Extension to the Model for Unbounded Replication 54

2

A Messages 60
A.1 Syntax of messages . 60
A.2 Semantics of terms . 60

B Protocols 61
B.1 Atomic protocols . 61
B.2 Protocol Algebra . 62
B.3 Formal definition of a protocol execution . 62
B.4 Formal definition of protocol oracles . 65

C A case study : signed DDH 66
C.1 Key exchange security . 68
C.2 Proof for φ3 . 70

C.2.1 Real or random of the key . 70
C.2.2 Authentication . 71

C.3 Conclusion for Signed DDH . 72

D An application to SSH 72
D.1 Presentation of SSH . 72
D.2 The security of the protocol without forwarding agent 73
D.3 Proof of real of random . 75

D.3.1 Proof of Ax |= φ2 ∼ ψ2 . 75
D.3.2 Proof of Ax |= φ1

2 ∼ ψ1
2 . 76

D.4 Proof for the authentication . 76

E SSH with forwarding agent 77
E.1 Scheme of the proof . 77

E.1.1 First application of Corollary 3 . 78
E.1.2 Second application of Corollary 3 . 79

F Proofs 81
F.1 Formal Corollary for Key Exchange . 81
F.2 Formal Corollary for Key Confirmations . 83
F.3 Oracle Simulation . 84
F.4 Autocomposition Results . 87
F.5 Key Exchanges . 91
F.6 Computational soundness . 104

Part I

The Framework

1 Introduction

This paper is concerned with the security proofs of composed protocols. This topic has been
widely studied in the last two decades. For instance, Universal Composability (UC) and
simulation based reductions [1–6] and other game-based composition methods [7–10] address

3

this issue. While the former proceed in a more bottom-up manner (from secure components in
any environment, construct secure complex protocols), the latter proceed in a more top-down
way: from the desired security of a complex protocol, derive sufficient security properties of its
components. Such “top-down” proofs design allows more flexibility: the security requirements
for a component can be weaker in a given environment than in an arbitrary environment.
The counterpart is the lack of “universality”: the security of a component is suitable for some
environments only.

We follow the “top-down” approach. While we aim at designing a general methodology,
our target is the management of formal security proofs in the Computationally Complete
Symbolic Attacker (CCSA) model [11]. As a side result of our work, we provide with a way
of proving the security of an arbitrary number of sessions (that may depend on the security
parameter) in the CCSA model.

When trying to (de-)compose security properties, the main difficulty comes from the fact
that different protocols may share some secrets. This is typically the case for multiple sessions
of the same protocol, or for key exchange protocols, which result in establishing a shared
secret that will be later used in another protocol. Protocols may also share long term secrets,
for instance the same signing key may be used for various authentication purposes. Another
example is the SSH protocol with the agent forwarding feature [12], which we will consider
later. The forwarding feature allows to obtain, through previously established secure SSH
connections, signatures of fresh material required to establish new connections. It raises a
difficulty, as signatures with a long term secret key are sent over a channel established using
the same long term secret key.

As far as we know, the existing composition results that follow the “top-down” approach
cannot be used in situations where there is both a “state passing”, as in key exchange protocols,
and shared long term secrets. For instance, in the nice framework of [10], the same public key
cannot be used by several protocols, a key point for reducing security of multiple sessions to
security of one session.

When decomposing the security of a composed protocol into the security of its components,
we would like to break a complex proof into simpler proofs, while staying in the same proof
framework. This is also a difficulty since the attacker on a protocol component might use the
other components: we need a proof with respect to a stronger attacker. In [10], such a strong
attacker can be simulated by a standard one, because there is no shared long term secret.

1.1 Our contributions

We provide with a composition framework that reduces the security of a compound protocols
to the security of its components. We allow both state passing and shared long term secrets.
We stay in the same proof framework of the CCSA model.

The starting idea is simple: if we wish to prove the security of a composed protocol P‖Q,
it is sufficient to prove the security of P against an attacker that may simulate Q, maybe
with the help of an oracle. If n are the secrets shared by P and Q, this simulation has
to be independent of the distribution of n. This is actually an idea that is similar to the
key-independence of [8].

Therefore, we first introduce the notion of O-simulation, in which an oracle O holds the
shared secrets: if Q is O-simulatable and P is secure against an attacker that has access to O,
then P‖Q is secure. Intuitively, O defines an interface through which the secrets can be used
(e.g. obtaining signatures of only well tagged messages). O simulatable protocols conform to

4

this interface.
We extend this basic block to arbitrary parallel and sequential compositions, as well as

replication of an unbounded number of copies of the same protocol. In the latter case, the
security of a single copy of P against an attacker that has access to an oracle allowing to
simulate the other copies, requires to distinguish the various copies of a same protocol. In the
universal composability framework, this kind of properties is ensured using explicit session
identifiers. We rather follow a line, similar to [13], in which the session identifiers are implicit.

Our main composition Theorems are generic: the classical game based setting can be used
to prove the subgoals. They are also specially well-suited for the CCSA model, which allows
to complete computational proofs of real life protocols [14–16], while only relying on first order
logic and cryptographic axioms. Many such axioms can easily be generalized so as to be sound
with respect to an attacker that has access to oracles (we will see examples later).

A proof using such axioms is valid for an attacker who has access to an environment,
while abstracting all the details of the environment and its interactions with the attacker.
Moreover, as our reductions from one session to multiple sessions are uniform, we may now
complete proofs in the CCSA model for a number of session that is parameterized by the
security parameter. This was a limitation (and left as an open issue) in all previous CCSA
papers.

We illustrate our composition results showing how to split the security of any (multi-session
with shared long term secret) composed key exchange into smaller proofs. We then complete
the formal proof of security of a Diffie-Hellman key exchange (ISO 9798-3 [17]) for any number
of sessions in parallel.

We generalize the application to key exchanges performing key confirmations, i.e. using
the derived key in the key exchange (as in TLS). The generalization is simple, which is a clue
of the usability of our framework.

To illustrate the usability of our framework, we use all our results to prove the security of
the SSH [12] protocol with a modified agent forwarding, a complex example of key exchange,
with both key confirmation and long term shared secrets. The modification, which consists in
the addition of a tag to specify if the signature was performed remotely, is necessary for the
protocol to satisfy some natural security properties related to the agent forwarding.

1.2 Related Works

We introduce the composition problem through a process algebra: protocols are either build-
ing blocks (defined,e.g, with a transition system) or composed using parallel and sequential
composition, and replication. This prevents from committing to any particular programming
language, while keeping a clean operational semantics. This approach is also advocated in [10],
which follows a similar approach. Other works on composition (e.g., [5, 7]) rely on specific
execution models.

Our starting idea, to prove a component w.r.t. a stronger attacker that has access to the
context, is not new. This is the basis of many works, including [8–10,18]. The main difference,
that we wish to emphasize, is that these works do not support long term shared secrets, used
in different components. Notably, the oracles of [10] are only used to decompose protocols
with state passing. Our notion of simulatability allows sharing long term secret by granting
the attacker access to oracles that depend on the secrets (for instance, signing oracles). It also
allows a symmetric treatment for proofs of a protocol and proofs of its context.

5

For several specific problems, typically key exchanges, there are composition results allow-
ing to prove independently the key exchange protocol and the protocol that uses the exchanged
key [8, 9, 13, 18, 19]. In such examples, the difficulty also comes from the shared secret, es-
pecially when there is a key confirmation step. In that case, the derived key is used for an
integrity check, which is part of the key exchange. Then the property of the key exchange:
“the key is indistinguishable from a random” does not hold after the key confirmation and
thus cannot be used in the security proof of the protocol that uses this exchanged key. In [8],
the authors define the notion of key independent reduction, where, if an attacker can break
a protocol for some key distribution, he can break the primitive for the same distribution of
the key. This is related to our notion of simulatability, as interactions with shared secrets
are captured by an oracle for fixed values of the key, and thus attacks on the protocol for
a fixed distribution are naturally translated into attacks against the primitive for the same
distribution. Key exchanges with key confirmation are therefore a simple application of our
composition results. Along the same line, [19] extends [18] to multi staged key exchanges,
where multiple keys might be derived during the protocol. While we do not directly tackle
this in our paper, our framework could be used for this case.

The authors of [9] also provide results allowing for the study of key renewal protocols (which
we capture with the sequential replication Theorem), and has the advantage to be inside a
mechanized framework, while we only cast our results inside a mechanizable framework. It
does not however consider key confirmations.

The UC framework initiated by [1] and continued in [3, 4, 6] is a popular way of tackling
composition. As explained above, this follows a “bottom-up” approach, in which protocols
must be secure in any context, which often yield very strong security properties, some of
which are not met in real life protocols. Moreover, to handle multiple sessions of a protocol
using a shared secret, joint-state theorems are required. This requires a tagging mechanism
with a distinct session identifier (sid) for each session. Relaxing this condition, the use of
implicit session identifiers was established in [20] for the UC framework, ideas continued in [13]
for Diffie-Hellman key exchanges, where they notably provide a proof of the ISO 9798-3 [17]
protocol.

We do not consider a composition that is universal: it depends on the context. This allows
us to relax the security properties regarding the protocol, and thus prove the compositional
security of some protocols that cannot be proved secure in the UC sense. We also rely on
implicit sids to prove the security of multiple sessions. Some limitations of the UC framework
are discussed in [18, Appendix A].

In [5], the authors also address the flexibility of UC (or reactive simulatability) showing how
to circumvent some of its limitations. The so-called “predicates” are used to restrict the order
and contents of messages from environment and define a conditional composability. Assuming
a joint-state conditional composability theorem, secret sharing between the environment and
the protocol might be handled by restricting the accepted messages to the expected use of the
shared secrets. However, the framework does not cover how to prove the required properties
of (an instance of) the environment.

Protocol Composition Logic is a formal framework [21] designed for proving, in a “Dolev-
Yao model”, the security of protocols in a compositional way. Its computational semantics is
very far from the usual game-based semantics, and thus the guarantees it provides [22] are
unclear. Some limitations of PCL are detailed in [23].

The compositional security of SSH, in the sense of [18], has been studied in [24]. They do
not consider however the agent forwarding feature. It introduces important difficulties since

6

the key exchange is composed with a second key exchange that uses both the first derived key
and the same long term secrets. SSH has also been studied, without agent forwarding, in [25],
where the implementation is derived from a secure modelling in CryptoVerif [26].

Summing up, our work is strongly linked to previous composition results and captures
analogues of the following notions in our formalism: implicit disjointness of local session
identifiers [20], single session games [18], key-independent reductions [8] and the classical
proof technique based on pushing part of a protocol inside an attacker, as recently formalized
in [10]. We build on all these works and additionally allow sharing long term secrets, thanks
to a new notion of O-simulatability. This fits with the CCSA model: the formal proofs
of composed protocols are broken into formal proofs of components. All these features are
illustrated by a proof of SSH with (a modified) agent forwarding.

2 Protocols and Indistinguishability

We first recall some features of the CCSA model. Although this model is not used until the
case studies, it may be useful for an easier understanding of the protocol semantics.

2.1 Syntax and semantics of terms

To enable composition with long term shared secrets, we must be able to specify precisely
the shared randomness between protocols. We use symbols from an alphabet of names, to
represent the random samplings. The same symbol used twice represents the same (shared)
randomness. Those names can be seen as pointers to a specific randomness, where all the
randomness has been sampled upfront at the beginning of the protocol. This idea stems from
the CCSA model [11], from which we re-use exactly the same term semantics. This is one of
the reason why our results, while applicable in a broader context, fit naturally in the CCSA
model. Let us recall the syntax and semantics of terms drawn from the CCSA model.

Syntax We use terms built over explicit names to denote messages computed by the protocol.
The terms are defined with the following syntax:

t ::= n names
| n~i indexed names
| x variable
| f(t1, . . . , tn) operation of arity n

A key addition to the CCSA model is that some names can be indexed by sequences of
index variables. This is necessary so that we may later on consider the replication of protocols.
When a replicated protocol depends on a name ni, the first copy (session) of the protocol uses
n1, the second n2, Names without index models randomness shared by all sessions of
the protocol. Variables are used to model the attacker inputs, and function symbols allows to
model the cryptographic computations.

Semantics Terms are interpreted as bitstrings. As in the computational model, the inter-
pretation depends on some security parameter η. As we assume that all the randomness is
sampled at the beginning, the interpretation depends on an infinitely long random tape ρs.

7

We then leverage the notion of a cryptographic library1, that provides an interpretation for
all names and function symbols. A cryptographic library Mf provides for each name n a
Probabilistic Polynomial Time Turing Machine (PPTM for short) An, that is given access to
the random tape ρs. As an additional input, all machines will always be given the security
parameter in unary. Each An extracts a bit-string of length η from the random tape. Different
names extract non-overlapping parts of the random tape. In the interpretation, we give to all
the PPTM the same random tape ρs, so each name is always interpreted with the same value
in any term (and thus any protocol), and all names are interpreted independently.
Mf also provides for each function symbol f (encryption, signature,...) a PPTM Af , that

must be deterministic. To model randomized cryptographic primitives, additional randomness
must be given to the function symbol as extra names (cf. Example 2.1).

Given Mf , the semantic mapping [[·]]η,σρs evaluates its argument, a formal term, given an
assignment σ of its variables to bit-strings and a random tape ρs. For instance, if n is a
name, [[n]]ηρs = An(1η, ρs) (extracts a bit-string of length η from the random tape ρs) and
[[sign(x, k)]]

η,{x 7→m}
ρs = Asign(m,Ak(1η, ρs)). The details about the syntax and semantic of

messages can be found in Appendix A.

2.2 Syntax of the protocols

The summary of the protocol syntax is given in Figure 1. An elementary protocol models a
thread running on a specific computer. let denotes variable binding inside a thread, in(c, x)
(resp. (out(c,m)) denotes an input (resp. an output) of the thread over the channel c, where
all channels are taken out of a set C. For simplicity, channel identifiers are constants or indexed
constants. In particular, they are known to the attacker. The if then else constructs denotes
conditionals, 0 is a successfully terminated thread and ⊥ is an aborted thread.

For protocols, our goal is to state and prove general composition results: we first consider
sequential composition (the ; operator), where 0;P reduces to P , while ⊥;P reduces to ⊥.
In most cases, we will omit 0. We also consider parallel composition (the ‖ operator), a
fixed number N of copies running concurrently ‖i≤N , as well as an arbitrary number of copies
running concurrently ‖i. For instance, we can express a (two-parties) key-exchange consisting
of an initiator I and a responder R with I‖R, the key exchange followed by a protocol using
the exchanged key (I;P I)‖(R;PR), as well as any number of copies of the resulting protocol
running in parallel: ‖i((I;P I)‖(R;PR)). We can also consider an arbitrary iteration of a
protocol, “;i”, which could be used for expressing, for instance, key renewal.

We provide in Appendix B a full definition of the protocol algebra. For generality, the full
algebra is also parameterized by some atomic protocols, that can be used to easily extend the
syntax.

We allow terms inside a protocol to depend on some free variables and, in this case, we
denote P (x1, . . . , xn) a protocol, which depends on free variables x1, . . . , xn. P (t1, . . . , tn)
denotes the protocol obtained when instantiating each xi by the term ti.

We denote N (P) (resp C(P)) the set of names (resp. channel names) of P .

Example 2.1. Given a randomized encryption function enc, we let P (c, x1, x2) be the protocol
in(c, x).out(c, enc(x, x1, x2)). Given names sk, r representing respectively a secret key and
a random seed, EN := ‖i≤NP (ci, ri, sk) is then the protocol allowing the attacker to obtain

1This corresponds in the CCSA model to the notion of functional model.

8

elementary protocols:
Pel ::= let x = t in Pel variable binding

| in(c, x).Pel input
| out(c,m).Pel output
| if s = t then Pel else Pel conditional
| 0 success
| ⊥ failure

protocols:
P, P ′ ::= Pel

| Pel;P sequential composition
| P‖P ′ parallel composition
| ‖i≤NP bounded replication
| ‖iP unbounded replication

Figure 1: The protocol algebra

φ, (P, σ) −→
A

φ′, (P ′, σ′)

φ, (P ;Q, σ) −→
A

φ′, (P ′;Q, σ′) φ, (0;Q, σ) −→
A

φ, (Q, σ)

φ, (P, σ) −→
A

φ′, (P ′, σ′)

φ, (P, σ)‖E −→
A

φ′, (P ′, σ′)‖E

Figure 2: Operational Semantics (excerpt)

cyphertexts for an unknown secret key sk. Unfolding the definitions, we get:

EN := P (c1, r1, sk)‖ . . . ‖P (cn, rn, sk)

The generalization giving access to encryption for five secret keys is expressed with ‖i‖j≤5P (cj,i, rj,i, skj).

2.3 Semantics of the protocols

We give here some essential features of the formal execution model, which we need to formalize
our composition results.

A (global) state of a protocol consists in a frame, which is a sequence of bit-strings mod-
elling the current attacker knowledge, and a finite multiset of pairs (P, σ), where P is a protocol
and σ is a local binding of variables. Intuitively, each of the components of the multiset is the
current state of a running thread. We write such global states φ, (P1, σ1)‖ · · · ‖(Pn, σn).

The transition relation between global states is parameterized by an attacker A who inter-
acts with the protocol, modelled as a PPTM with its dedicated random tape ρr. The attacker
chooses which of the threads is going to move and computes, given φ, the input to that thread.
In the following, the configuration of the protocol and the security parameter are (also) always
given to the attacker, which we do not make explicit for simplicity.

We give some of the rules describing the Structural Operational Semantics in Figure 2. The
full semantics can be found in Appendix B. The transition relation −→

A
between configurations

9

depends on the attacker A, the security parameter η and the random samplings ρs (to interpret
terms) and ρr (the randomness of the attacker). In P ;Q, P has to be executed first. When it
is completed (state 0), then the process can move to Q, inheriting the variable bindings from
P . If P is not waiting for an input from the environment, it can move independently from
any of the other parallel processes.

The semantics of inputs (not detailed for simplicity) reflects the interactions with the
attacker. A computes the input to the protocol, given a frame φ and its own random tape
ρr. Therefore transitions depend not only on the attacker machines, but also2 on the name
samplings ρs (secret coins) and ρr (attacker’s coins).

Example 2.2. Continuing Example 2.1, the initial configuration corresponding to E2 is
∅, (P (c1, r1, sk), ∅)‖(P (c2, r2, sk), ∅), where the attacker knowledge is empty and no local vari-
ables are bound. We consider one of the possible reductions, for some attacker A that first
sends a message over channel c1 and then c2:

∅, (P (c1, r1, sk), ∅)‖(P (c2, r2, sk), ∅)
−→
A
∅, (out(c1, enc(x, r1, sk), {x 7→ m})‖(P (c2r2, sk), ∅)

m = A(∅, ρr) is the first input
message computed by the attacker

−→
A

φ, (P (c2, r2, sk), ∅)

φ = [[enc(x, r1, sk)]]
η,{x 7→m}
ρs is the

interpretation of the output
received by the attacker

−→
A

φ, (out(c2, enc(x, r1, sk), {x 7→ m2})
m2 = A(φ, ρr) is the second input
message computed by the attacker

−→
A

(φ, [[enc(x, r2, sk)]]
η,{x 7→m2}
ρs),0

We assume action determinism of the protocols [27]: given an input message on a given
channel, if the current state is

φ, (P1, σ1)‖ · · · ‖(Pn, σn),

at most one of the Pi may move to a non-abort state. This means that each thread checks
first that it is the intended recipient of the message. This also means that each output has to
be triggered by an input signal: none of the Pi starts with an output action. We remark that
in practice, protocols are action determinate.

For replicated protocols ‖i≤NP or ‖iP , the names in P that are indexed by the variable i
are renamed as follows: ‖i≤NP is the protocol P{i 7→ 1}‖ . . . ‖P{i 7→ N} and

φ, (‖iP, σ)‖E −→
A

φ, (‖i≤A(ρr,φ)P, σ)‖E.

In other words, the attacker chooses how many copies of P will be considered, which may
depend, in particular, on the security parameter. A(ρr, φ) must be a natural number in
unary.

2They actually also depend on the oracle’s coins, when A is interacting with an external oracle, which we
explain later.

10

2.4 Stateless Oracle Machines

For reasons that have been explained in the introduction, we wish to extend the semantics of
protocols and their indistinguishability to attackers that have access to an additional stateless
oracle. At this stage, we need stateless oracles in order to be compositional. Let us explain
this. Assume we wish to prove a property of R in the context P‖Q‖R. The idea would be to
prove R, interacting with an attacker that simulates P‖Q. This attacker is itself a composition
of an attacker that simulates P and an attacker that simulates Q. The protocols P , Q, R
share primitives and secrets, hence the simulation of P,Q requires access to an oracle that
holds the secrets. If such an oracle were to be stateful, we could not always build a simulator
for P‖Q from simulators of P,Q respectively, since oracle replies while simulating Q could
depend on oracle queries made while simulating P , for instance.

The oracles depend on a security parameter η (that will not always be explicit), (secret)
random values and also draw additional coins: as a typical example, a (symmetric key) en-
cryption oracle will depend on the key k and use a random number r to compute enc(m, r, k)
from its query m. Therefore, the oracles can be seen as deterministic functions that take two
random tapes as inputs: ρs for the secret values and ρO for the oracle coins.

Formally, oracles take as input tuples (m, r, s) where m is a finite sequence of bitstrings, r
is a handle for a random value and s is a handle for a secret value. r and s are respectively used
to extract the appropriate parts of ρO, ρs respectively, in a deterministic way: the randomness
extracted from ρO is uniquely determined by m, r, s and the extractions for different values
do not overlap.

In what follows, we only consider oracles that are consistent with a given cryptographic
library Mf . Such oracles only access ρs through some specific names. This set of names is
called the support of the oracle.

Example 2.3. An encryption oracle for the key k (corresponding to the handle “1”), succes-
sively queried with (m, 1, 1), (m′, 2, 1), (m, 3, 1), (m, 1, 1), (m′, 2, 2), . . . will produce respec-
tively the outputs enc(m, r1, k), enc(m′, r2, k), enc(m, r3, k), enc(m, r1, k), ⊥,. . . Here r1, r2, r3

are non-overlapping parts of ρO (each of length η). The support of this oracle is {k}.

The formal definition of stateless oracles is a bit involved, notably to formally specify
the randomness extraction. This construction is required to ensure the determinism of the
oracles. Determinism is required to build a single simulator for two parallel protocols from
the individual simulators for the two protocols.

For instance, for an oracle performing randomized encryption, rather than always en-
crypting with a fresh nonce, this system allows multiple attackers to obtain an encryption of
a message with the same random.

Definition 1 ((Stateless) Oracle). An oracle O is a triple of functions that have the following
inputs

• a sequence of bitstrings w ∈ ({0, 1}∗)n and two bitstrings r, s: the query, consisting of
an input query w, an input tag r, an input key s;

• a random tape ρs for the (secret) random values;

• the security parameter η;

• a random tape ρO for the oracle’s coins.

11

The first function assigns to each w, s, r an integer n(w, s, r) ∈ N and is assumed injective.
n(w, s, r) is used to extract a substring e1(n(w, s, r), η, ρO) from ρO, which is uniquely deter-
mined by the input. We assume that the length of the substring extracted by e1 only depends
on η, and substrings extracted with e1 are disjoint for different values of n.

The second function e2 assigns to each s a sequence p(s) of natural numbers, that are used
to extract secret values from ρs: e2(s, η, ρs) is a sequence of bitstrings. It is also assumed to
be injective.

The third function takes η, w, r, s, e1(n(w, s, r), η, ρO), e2(s, η, ρs) as input and returns a
result (a bitstring) or a failure message.

Example 2.4. Expanding upon Example 2.3, the encryption oracle is given by the triple of
functions (e1, e2, e3) such that:

• e1(n(w, s, r), η, ρO) extracts the substring r at position range [n(w, s, r)×η, (n(w, s, r)+
1)× η] from ρO.

• e2(s, η, ρs) =

{
[[k]]ηρs if s = 1

0 else

• e3(η, w, r, s, e1(n(w, s, r), η, ρO), e2(s, η, ρs)) = [[enc(y, r, x)]]η{y 7→w,r 7→r,x7→e2(s,η,ρs)

Given η, and a sequence of bitstrings m, we call r1 the sequence of bitstrings at position range
[n(m, 1, 1)×η, (n(m, 1, 1)+1)×η] from ρO. Then, on input (m, 1, 1), e1(n(m, 1, 1), η, ρO) = r1,
e2(1, η, ρs) = [[k]]ηρs and the oracle returns e3(η,m, 1, 1, r1, [[k]]ηρs) = [[enc(y, r, k)]]ηy 7→m,r 7→r1 .

An oracle machine (PPTOM) is a PPTM, equipped with an additional tape, on which the
queries to the oracle are written and from which the oracle replies are read. We often write
explicitly the machine inputs, as in AO(ρs,ρO)(ω, ρr), where ω is the input data of A, ρr is
its random tape and ρs, ρO are the random tapes accessible to the oracle. These definitions
extend to multiple oracles 〈O1, . . . ,On〉, prefixing the query with an index in {1, . . . , n}.

Definition 2. A Probabilistic Polynomial Time Oracle Machine (PPTOM) is a Turing ma-
chine denoted by AO and equipped with:

• an input/working/output tape (as usual; it is read/write);

• a read-only random tape ρr (attacker’s coins);

• an oracle input tape ρO;

• an oracle output tape, which is read-only.

• an oracle read-only random tape ρs (not accessible by the Turing Machine);

Note that once the oracle’s random tape is fixed, we ensure that all our oracles are deter-
ministic.

12

2.5 Computational indistinguishability

To define the classical notion of indistinguishability, we describe how protocols may be seen
as oracles, that an attacker can interact with. Given a protocol P and a cryptographic library
Mf , the oracle OP is an extension of the previous oracles: it takes as an additional input
an history tape that records the previous queries. Given a query m with history h (now the
components r, s are useless), the oracle replies what would be the output of P , given the
successive inputs h,m. It also appends the query m to the history tape. The formal definition
of protocol oracles can be found in Appendix B.4.

The machines that interact with OP are also equipped with the history tape that is read-
only: the history can only be modified by the oracle. Since P may use secret data, the oracle
may access a secret tape ρs; this will be explicit.

An oracle may implement multiple parallel protocols: the oracle O〈P1,...,Pn〉 first checks
which Pi is queried (there is at most one such i, by action determinism) and then replies as
OPi .

Finally, we may consider oracles that combine protocols oracles and stateless oracles.
A〈O1,...,Om〉,〈OP1 ,...,OPn〉 is also written AO1,...,Om,OP1 ,...,OPn .

Definition 3. Given a cryptographic libraryMf , an oracleO and protocols P1, . . . , Pn, Q1, . . . , Qn,
we write AO,OP1?Q1

,...,OPn?Qn ≺ ε if for every polynomial time oracle Turing machine AO,

|Pρs,ρr,ρO{AO(ρs,ρO),OP1 (ρs),...,OPn (ρs)(ρr, 1
η) = 1}

−Pρs,ρr,ρO{AO(ρs,ρO),OQ1
(ρs),...,OQn (ρs)(ρr, 1

η) = 1}|

is negligible in η. We will write P ∼=O Q for AO,OP?Q ≺ ε.

Example 2.5. For i ∈ {1, 2}, the protocol Pi is defined with the single transition:

q, {x1, ..., xn}
xn+1=(m1,m2)−−−−−−−−−→ (q, enc(mi, sk), {x1, ..., xn, xn+1})

The protocol expects to receive a couple as input, and will output either the left message or
the right message using some secret key. P1

∼=O P2 then captures the fact that an attacker
with oracle O has a negligible probability to win the IND-CPA game.

By construction, indistinguishability is compatible with our constructions for protocols in
parallel and multiple protocol oracles. Indeed the oracle protocol for P‖Q behaves exactly the
same as the two oracle OP and OQ in parallel.

Lemma 4. For protocols P,Q,A,B, an oracle O, and a list Ol of protocol oracles,

AO,O(A‖P)?(B‖Q) ≺ ε⇔ AO,Ol,OA?B ,OP?Q ≺ ε

3 Simulatability

We define a notion of “perfect” simulation, where a protocol depends on some secrets that the
attacker can only access through an oracle, and an attacker must be able to produce exactly
the same message as the protocol. This means that an attacker, given access O but not to a
set of secrets n, can completely simulate the protocol P (using O to have a partial access to
the secrets), i.e., produce exactly the same distribution of message.

13

Formally, given a set of names n, an oracle O and a protocol P . We say that νn.P is
O-simulatable, if there exists a PTOM AO such that for any attacker BO, the sequences of
messages produced by BO,OP has exactly the same probability distribution as the on produced
by BO interacting with AO instead of OP .

Assume that Q ∼=O R and νn.P is O-simulatable, where n contains the secrets shared by
P,Q and R. Any distinguisher against Q ∼=O R can also produce any message that would
produce P in this context, and can therefore be transformed into a distinguisher against
Q‖P ∼=O R‖P . In other terms, Q ∼=O R and νn.P is O-simulatable implies that Q‖P ∼= R‖P .

3.1 Protocol Simulation

The goal in the rest of the paper is to use this notion of simulatability to obtain composability
results. Suppose one wants to prove P‖Q ∼= P‖R, knowing that Q ∼=O R and P is O-
simulatable. The way to obtain a distinguisher for Q ∼=O R from one on P‖Q ∼= P‖R is to
“push” the (simulated version) of P within the distinguisher. A protocol P is then simulatable
if there exists a simulator AO that can be “pushed “ in any distinguisher D. We formalize this
construction below, where a protocol is simulatable if and only if any distinguisher D behaves
in the same way if the protocol oracle OP is replaced by its simulator AO. We define formally
D[AO]O the replacement of OP in DO,OP .

Definition 5. Given an oracleO, a cryptographic libraryMf , a protocol P , PTOMsDO,OP (ρrD , 1
η)

and AO(· · · , 1η), we define D[AO]O(ρr, 1
η) as the PTOM that:

1. Splits its random tape ρr into ρr1 , ρr2

2. Simulates DO,OP (ρr2 , 1
η) by replacing every call to OP with a computation of AO: each

time D enters a state corresponding to a call to OP , D[AO] appends the query m to a
history θ (initially empty), executes the subroutine AO(ρs,ρO)(ρr1 , θ, 1

η) and behaves as
if the result of the subroutine was the oracle reply.

3. Prefixes each random handle of an oracle call of D with 0 and random handle of an
oracle call of A with 1.

4. Outputs the final result of D.

D[AO]O must simulate AO and D so that they do not share randomness. To this end,
D[AO]O first splits its random tape ρr into ρr1 (playing the role of ρO) and ρr2 (playing the
role of ρD). The oracle queries are prefixed by distinct handles for the same reason. DO,OP
has access to the shared secrets via both O and OP , while D[AO]O only has access to them
through the oracle O . Remark that if AO and DO,OP has a run-time polynomially bounded,
so does D[AO]O.

To define the central notion of O-simulatability, the distribution produced by any distin-
guisher interacting with the simulator must be the same as the distribution produced when it
is interacting with the protocol. However, as we are considering a set of shared secrets n that
might be used by other protocols, we need to ensure this equality of distributions for any fixed
concrete value v of the shared secrets. Then, even if given access to other protocols using the
shared secrets, no adversary may distinguish the protocol from its simulated version.

14

Definition 6. Given an oracle O with support n, a cryptographic libraryMf , a protocol P ,
a sequence of names n, then, νn.P is O-simulatable if and only if there exists a PTOM AOP
such that for every PTOM DO,OP , for every η, every v ∈ ({0, 1}η)|n|, c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c | [[n]]ηρs = v}

Note that our definition of simulatability is a very strong one as it requires a perfect
equality of distributions, as opposed to computational indistinguishability. This is intuitively
what we want: O-simulation expresses that P only uses the secrets in n as O does. This
notion is not intended to capture any security property.

In practice, let us consider the security property P‖Q ∼= P‖Q′, where P is simulatable
by AOP . The idea of the later composition result is that an attacker D that distinguishes
between DO,OP ,OQ and DO,OP ,OQ′ can be turned into an attacker that distinguishes between
D[AOP]O,OQ and D[AOP]O,OQ′ . Notice that here, Q and P may share some secrets, and their
distributions are not independent. The intuition is that Q is fixing a specific value for the
shared name between P and Q, and P then needs to be simulatable for this fixed value. This
is why the notion of simulatability asks that a protocol is simulatable for any fixed value of
a set of secret names. The formalization of this proof technique is given by the following
Proposition.

Proposition 7. Given an oracle O with support n, a cryptographic libraryMf , protocols P,Q
such that N (P)∩N (Q) ⊆ n, then, for any PTOM AOP , νn.P is O-simulatable with AOP if and
only if for every PTOM DO,OP ,OQ , for every η, every v ∈ ({0, 1}η)|n|, c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

It then implies that:

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1

η) = c}

While this Definition intuitively captures the proof technique used to allow composition, it
does not provide insight about how to prove the simulatability. Another equivalent definition
states that a protocol is simulatable if there exists a simulator that can produce exactly the
same distribution of messages as the protocol interacting with any attacker. We formalize in
the following this second Definition, and prove that the two Definitions are equivalent, which
also yields the proof of Proposition 7.

For this second Definition of simulation to be realizable, we need to ensure that simulator’s
oracle calls and attacker’s oracle calls use a disjoint set of random coins for the oracle random-
ness. We thus assume, w.l.o.g., that the random handles r of simulator’s queries are prefixed
by 1. This ensures that, as long as adversaries only make oracle calls prefixed by 0 (this
can be assumed w.l.o.g. since it only constrains the part of the oracle’s random tape where
the randomness is drawn) the oracle randomness used by the simulator is not used by the
adversary. We provide later in Example 3.2 a complete example illustrating both simulation
and the need of the prefix and a formal definition of prefixed models.

Definition 8. Given a cryptographic library Mf , a sequence of names n, an oracle O and
a protocol P , we say that νn.P is O-simulatable if the support of O is n and there is a

15

PTOM AO (using random handles prefixed by 0) such that, for every c ∈ {0, 1}?, for every
v ∈ ({0, 1}η)|n|, for every m ≥ 1, for every PTOM BO (using random handles prefixed by 1),

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(ρr1 , θ

1
m, 1

η) = c | [[n]]ηρs = v}
= Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ

2
m) = c | [[n]]ηρs = v}

where
φ2
k+1 = φ2

k,OP (ρs, θ
2
k)

φ1
k+1 = φ1

k,AO(ρs,ρO)(ρr1 , θ
1
k, η)

θik+1 = θik,BO(ρs,ρO)(ρr2 , η, φ
i
k+1)

for 0 ≤ k < m and φ0 = ∅, θ0 = BO(ρs,ρO)(ρr2 , η, ∅).

The machine AO can be seen as the simulator, while B is an adversary that computes the
inputs: the definition states that there is a simulator, independently of the adversary. We
asks for equality of distributions, between the sequence of messages θ2, corresponding to the
interactions of BO with OP , and the sequence of messages θ1, corresponding to the interactions
of BO with AO.

Note that our definition of simulatability is a very strong one as it requires a perfect
equality of distributions, as opposed to computational indistinguishability. This is intuitively
what we want: O-simulation expresses that P only uses the shared secrets as O does. This
notion is not intended to capture any security property.

The two definitions are indeed equivalent. To prove this, a first technical Lemma is re-
quired. It shows that O-simulation, whose definition implies the identical distributions of two
messages produced either by the simulator or by the oracle, implies the equality of distributions
of message sequences produced by either the oracle or the simulator. It is proved essentially
via an induction on the length of the sequence of messages. For any sequence of names n and
parameter η, we denote Dη

n = {[[n]]ηρs |ρs ∈ {0, 1}ω} the set of possible interpretations of n. We
reuse the notations of Definition 8.

Lemma 9. Given a cryptographic libraryMf , a sequence of names n, an oracle O with support
n and a protocol P , that is O-simulatable with AO, we have, for every x, y, c, r2, rB ∈ {0, 1}?,
every v ∈ Dη

n, for every m ≥ 1, for every PTOM BO (using tags prefixed by 1):

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

where we split ρO into ρAO] ρBO such that O called by B only accesses ρBO and O called by
A only accesses ρAO (which is possible thanks to the distinct prefixes).

We now prove that Definition 8 implies Definition 5, i.e that the simulatability implies
that we can replace a protocol oracle by its simulator.

Lemma 10. Given an oracle O (with support n), a cryptographic library Mf , a sequence of
names n , P,Q protocols, such that νn.P is O-simulatable in the sense of Definition 8 with
AOP and N (P) ∩ N (Q) ⊆ n then, for every PTOM DO,OP ,OQ (prefixed by 1), every η, every
v ∈ Dη

n and every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

16

The idea is to use the definition ofO-simulatability, using a PTOM BO that behaves exactly
as D when it computes the next oracle queries from the previous answers. The difficulty is
that D may call the oracle OQ, while B has no access to this oracle. We know however that
shared names are included in n, whose sampling can be fixed at once (thanks to the definition
of O-simulation). The other randomness in Q can be drawn by B from ρr, without changing
the distribution of OQ’s replies.

Proof. Fix η and the interpretation [[n]]ηρs = v.
Given D, we let Dm be the machine that behaves as D, however halting after m calls to

OP (or when D halts if this occurs before the mth call) and returning the last query to OP .
We have that Dm first executes Dm−1, then performs the oracle call OP (ρs, θm−1), getting

um−1 and performs the computation of the next oracle call vm (if D makes another oracle call),
updates the history θm := (v1, . . . , vm) and returns vm if there is one or the output of D oth-
erwise. Dm[AOP] first executes Dm−1[AOP], then performs the computation AOP (Mf , ρr1 , θ

′
m−1)

of u′m, computes the next oracle call v′m (if one is performed), updates θ′m := (v′1, . . . , v
′
m) and

outputs either vm of the output of D.
We wish to use the definition of O-simulation in order to conclude. However, we cannot

directly use the O-simulation, as D has access to an extra oracle OQ.

Part 1
We first prove that, assuming AOP is a simulator of OP :

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c}

This is a straightforward consequence of Lemma 9. Writing respectively p1
1(c) = Pρs,ρr,ρO{DO,OP (ρr, 1

η) =
c} and p2

1(c) = Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c}, Using ρr1 , ρr2 as in Definition 5, we have

p1
1(c) =

∑
rB,r2

Pρs,ρr,ρO{D
O,OP (ρr, 1

η) = c | ([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

×Pρs,ρr,ρO{([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

p2
1(c) =

∑
rB,r2

Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c| ([[n]]ηρs , ρ

B
O, ρr2) = (v, rB, r2)}

×Pρs,ρr,ρO{[[n]]ηρs = v, ρBO = rB, ρr2 = r2}

We let

p1
2(rB, r2, v̄, c) = Pρs,ρr,ρO{DO,OP (ρr, 1

η) = c| ([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

and

p2
2(rB, r2, v̄, c) = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c| ([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

We use Definition 8 with BO(ρr2 , η, φ) as the machine that simulates Dm for m = |φ| and
using φ instead of querying the oracle. Let us define φim, θim for i = 1, 2 as in Definition 8.
Note that with the definition of D, B uses prefixes for oracle calls, disjoint from those used
in AP , hence randomness used for oracle calls in A and B are disjoint. Let vim be the last
message of θim. By definition of D and B we have v1

m = vm and v2
m = v′m. Choosing m such

that D makes less than m oracle calls, we have

pi2(rB, r2, v̄, c) =
∑

x̄ s.t. xm=c,ȳ Pρs,ρr1 ,ρr2 ,ρO{θ
i
m = x, φim = y| ([[n]]ηρs , ρ

B
O, ρr2) = (v, rB, r2)}.

17

Lemma 9 yields for all rB, r2, c that p2
2(rB, r2, c) = p1

2(rB, r2, c), which concludes part 1.

Part 2
We now prove that:

∀D. Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c}
⇒

∀D. Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1

η) = c}
(1)

We are thus going to show that, with the interpretation of n fixed, we can simulate OQ in
some D′ by sampling in ρr instead of ρs. However, both computations of OP and OQ depend
on ρs. This is where we need the assumptions that n contains the shared secrets between P
and Q, as well as the splitting of ρr.

For any machine MO,OQ , we let [M]On be the machine that executes M, simulating OQ
for a fixed value v of n. The machine samples the names appearing in Q and not in n and
hard codes the interpretation of n.

More precisely, we write OQ(ρs, θ) := OQ((ρs0 , ρs1 , ρs2), θ) where ρs0 is used for the sam-
pling of n, ρs1 for the sampling of other names in Q, and ρs2 for the reminder.

Then [M]On (ρr, 1
η) is the machine that:

• Splits ρr into two infinite and disjoints ρsQ, ρrM and initializes an extra tape θ to zero.

• SimulatesM(ρrM , 1
η) but every timeM calls OQ with input u, the machine adds u to

θ, and produces the output of OQ((v, ρrQ, 0), θ).

Such a machine runs in deterministic polynomial time (w.r.t. η). For any machineMO,OQ,OP ,
we similarly define [M]O,OPn . Now, we have that, for any c, by letting, for any X and U ,
Pc,vX (U) := PX{U = c | [[n]]ηρs = v}:

Pc,vρs,ρr,ρO(DO,OP (ρs0 ,ρs1 ,ρs2),OQ(ρs0 ,ρs1 ,ρs2)(ρr, 1
η))

=1 Pc,vρs,ρr,ρO(DO,OP (ρs0 ,ρs1 ,ρs2),OQ(ρs0 ,ρs1 ,0)(ρr, 1
η))

=2 Pc,vρs1 ,ρs2 ,ρr,ρO(DO,OP (ρs0 ,0,ρs2),OQ(ρs0 ,ρs1 ,0)(ρr, 1
η))

=3 Pc,vρs1 ,ρs2 ,ρr,ρO(DO,OP (v,0,ρs2),OQ(v,ρs1 ,0)(ρr, 1
η))

=4 Pc,vρsQ,ρs,ρrD,ρO(DO,OP (v,0,ρs),OQ(v,ρsQ,0)(ρr, 1
η))

=5 Pc,vρs,ρr,ρO([D]
O,OP (ρs)
n (ρr, 1

η)) (ii)

Since

1. OQ does not access ρs2

2. OP does not access ρs1

3. We are sampling under the assumption that [[n]]ηρs = v, i.e., ρs0 is equal to v.

4. Renaming of tapes

5. By construction

And we also have similarly that, for any c:

Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{[D[AOP]]Ov (ρr, 1
η) = c | [[n]]ηρs = v} (iii)

18

By applying the left-handside of (1) to [D]
O,OP (ρs)
n (ρr, 1

η) and [D[AOP]j]
O
v (ρr, 1

η), and using
(ii) and (iii), we can conclude by transitivity. We conclude the proof of the lemma by putting
Part 1 and Part 2 together.

We now prove the converse direction.

Lemma 11. Given an oracle O with support n, a cryptographic library Mf , protocols P,Q
such that N (P) ∩N (Q) ⊂ n, if there is a PTOM AOP such that, for every PTOM DO,OP ,OQ ,
for every η, every v ∈ Dη

n and every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

then νn.P is O-simulatable.

Proof. Let B be a PTOM, η, an interpretation v ∈ Dη
n and m ∈ N , we must prove that the

output distribution of B will be the same whether it interacts m-th time with AOP or OP .
We define D as follows. For i := 0 to m − 1, D computes wi := B(α1, . . . , αi). Then D calls
OP with wi and let αi+1 be the reply. D finally outputs αm. We denote by w′i and α′i the
corresponding values for D[AOP]O,OQ

Let us denote
φ2
k+1 = φ2

k,OP (ρs, θ
2
k)

φ1
k+1 = φ1

k,AO(ρs,ρO)(Mf , ρr1 , θ
1
k, η)

θik+1 = θik,BO(ρs,ρO)(Mf , ρr2 , η, φ
i
k)

for 0 ≤ k < m and φ0 = θ0 = ∅.
We have by construction of D for any c:

Pρs,ρr1 ,ρr2 ,ρO{wm = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2
m) = c | [[n]]ηρs = v}

and
Pρs,ρr1 ,ρr2 ,ρO{w

′
m = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{A

O(ρs,ρO)(Mf , ρr1 , θ
1
m, η) = c | [[n]]ηρs = v}

The hypothesis gives us that :

Pρs,ρr1 ,ρr2 ,ρO{wm = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{w
′
m = c | [[n]]ηρs = v}

So we conclude that:

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf , ρr1 , θ

1
m, η) = c | [[n]]ηρs = v}

= Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2
m) = c | [[n]]ηρs = v}

We can finally conclude, as Lemmas 10 and 11 directly yields that Definition 8 is equivalent
to Definition 8 simply by taking Q as the empty protocol.

19

Example 3.1. We fix firstMf (in an arbitrary way). We consider the following handshake
protocol, in which n, r, k, r′ are names:

A := in (cA, x0).out(cA, enc(n, r, k)). in (cA, x).
if dec(x, k) = 〈n, 1〉 then out(cA, ok)

‖ B := in (cB, y).out(cB, enc(〈dec(y, k), 1〉 , r′, k))

We consider the oracle Oenc,dec
k that, when receiving 〈t,m〉 as input, answers enc(m, ro, k)

if t = "enc", and dec(m, l) if t = "dec" (the oracle actually also expects an handle for
the secret key and a tag to specify where to sample ro). We can easily prove that νk.A is
Oenc,dec
k -simulatable, as the attacker can sample an arbitrary n′, use the oracle to compute

enc(n′, ro, k) (which has the same distribution as enc(n′, r, k) for any fixed value of k) with
the request 〈"enc", n〉, and dec(x, k) with the request 〈"dec", x〉.

Intuitively, the shared secret k is only used in A in ways that are directly simulatable with
the oracle, and A is thus O-simulatable.

Thanks to the more intuitive Definition of simulatability (cf. Definition 8 for details),
proving simulatability is in practice a syntactic verification. With Oenc,dec

k from the previous
example, νk.P is O-simulatable for any P where all occurrences of k occurs at key position,
and all encryptions use fresh randoms.

Let us explain why the previous examples illustrate the need for prefixed models.

Example 3.2. We take a more formal view on Example 3.1.
Let O be the encryption-decryption oracle: it expects an input 〈"dec",m〉 or 〈"enc",m〉,

a key s = 1 (only one encryption key is considered), an input tag t and a security parameter
η and returns

• enc(m, r, k) if the query is prefixed by "enc", k is the secret value extracted from ρs
corresponding to the key 1, r is drawn from ρO and associated with the tag t (via e1).

• dec(m, k) if the query is prefixed by "dec", k is the secret value extracted from ρs
corresponding to the key 1

• an error message otherwise (either the primitives fail or the query does not have the
expected format).

The goal is to show that νk.A is O-simulatable. (So, here, B is useless, and we let P be
A).
OP is then defined as follows:

• On input w1, with an empty history, it outputs [[enc(n, r, k)]]ηρs and writes w1 on the
history tape.

• On input w2 with a non empty history tape, it outputs ok if [[dec(x, k)]]η,x7→w2
ρs =

[[〈n, 1〉]]ηρs and an error otherwise.

The machine AO(ρr1 , θ, η) is then defined as follows:

• If θ = {m1}

1. A draws α (for the value of n) from ρr1 and draws t from ρr1

20

2. calls O with (〈"enc", α〉 , 1, t) and gets back the bitstring [[enc(n, r, z)]]
η,z 7→[[k]]ηρs
ρr1 ,ρO

.
The interpretation of k is indeed fixed at once since it belongs to the “shared”
names bounded by ν.

3. outputs [[enc(x, r, z)]]
η,x7→α,z 7→[[k]]ηρs
ρr1

• If θ = (m1,m2),

1. callsO with (〈"dec",m2〉 , 1,−) and gets back the bitstring w = [[dec(y, z)]]y 7→m2,z 7→[[k]]ηρs

or an error message.
2. checks whether w = [[〈n, 1〉]]ηρr1 . If it is the case, then outputs ok.

Now, consider an arbitrary PTOM BO.

• φ1
1 = [[enc(n, x, k)]]η,x7→s1ρr1

where s1 is the randomness used by O when queried with [[t]]ρr1
(note: we will see that it does matter to be very precise here; we cannot simply claim
that the value of x is just a randomness drawn by O).

• φ2
1 = [[enc(n, r, k)]]ηρs

• θ1
i = wi, an arbitrary bitstring, computed by BO using the oracle O, φ1

i and the random
tape ρr2 .

• φ1
2 = φ1

1, ok if

[[dec(y, z)]]y 7→w1,z 7→[[k]]ηρs = [[〈n, 1〉]]ηρr1 and an error

otherwise

• φ2
2 = φ2

1, ok if [[dec(x, k)]]η,x7→w2
ρs = [[〈n, 1〉]]ηρs and an error otherwise

A O-simulates νk.P iff, for every v = [[k]]ρs ,

Pρs,ρr1,ρr2 ,ρO{[[dec(y, z)]]y 7→w1,z 7→v = [[〈n, 1〉]]ηρr1}
= Pρs,ρr1 ,ρr2,ρO{[[dec(x, k)]]η,x7→w2

ρs = [[〈n, 1〉]]ηρs}

First, the distributions of φ1
1 and φ2

1 are identical. φ1
1 depends on ρr1 and ρO, while φ2

1

depends on ρs only. The distributions of φ1
1, [[〈n, 1〉]]ρr1 and φ2

1, [[〈n, 1〉]]ρs are also identical.
Now the distributions w1 = BO(φ1

1, ρr2), [[〈n, 1〉]]ρr1 and w2 = BO(φ1
2, ρr2), [[〈n, 1〉]]ρs are

equal if the randomness used by B are disjoint from the random coins used in φ1
1, φ

2
1. This is

why there is an assumption that ρr1 and ρr2 are disjoint and why it should be the case that
the random coins used in the oracle queries of B are distinct from the ones used in the oracle
queries of A. This can be ensured by the disjointness of tags used by A and B respectively.

With these assumptions, we get the identity of the distributions of dec(w1, v), [[〈n, 1〉]]ρs
and dec(w2, v), [[〈n, 1〉]]ρs , hence the desired result.

Without these assumptions (for instance non-disjointness of tags used by B, A), B can
query O with a random input and a random tag, say n′, t′. As above, we let s1 be the random
value drawn by O corresponding to the tag t′. Then P{[[n]]ρs = n′ ∧ [[r]]ρs = s1} = 1

22η
while

P{[[n]]ρr1 = n′ ∧ [[r]]ρr1 = s1} = 1
2ηP{[[t]]ρr1 = [[t′]]ρr2 ∨ ([[t]]ρr1 6= [[t′]]ρr2 ∧ [[r]]ρr1 = [[r′]]ρO)}

= 1
2η × (1

2η + 2η−1
2η ×

1
2η)

= 1
22η

(2− 1
2η)

In other words, the collision is more likely to occur since it can result from either a collision
in the tags or a collision in the randomness corresponding to different tags.

21

As demonstrated in the previous example, it is necessary to assume that oracle random-
ness used by the simulator queries and the attacker queries are disjoint. The simplest way
of ensuring this is to force all tags of oracle calls to be prefixed. We show here that this
assumption can be made without loss of generality.

Definition 12. Given a PTOM AO and a constant c. We define AOpref−c as a copy of A,
except that all calls to the oracle of the form w, r, s are replaced with calls of the form w, c ·r, s,
where the · denotes the concatenation of bitstrings.

The following lemma shows that we can, w.l.o.g., consider models, in which the tags are
prefixed.

Lemma 13. For any non-empty constant c and any PTOM AO, we haves

Pρs,ρr,ρO{AO(ρs,ρO)(ρr, 1
η) = 1} = Pρs,ρr,ρO{A

O(ρs,ρO)
pref−c (ρr, 1

η) = 1}

Proof. We fix a constant c, for any oracle O (with functions n, e1, e2), we define Opref−c (with
mapping function n′, e′1, e′2) the copy of O such that:

n′(w, s, r) = n(w, s, c|r)

n is injective by definition, so n′ is injective too. For any v ∈ {0, 1}η, as all extractions of e1

are unique for each value of n and their length only depends on η, we have for any w, r, s

PρO{e1(n(w, s, r), η, ρO) = v} = PρO{e′1(n′(w, s, r), η, ρO) = v}

This implies that for any input, O and Opref−c will produce the same output distribution.
So AO and AOpref−c will produce the same distributions for any input. We conclude by
remarking that AOpref−c and AOpref−c behaves the same by construction.

An immediate consequence of this Lemma is that for all indistinguishability results, we
can, w.l.o.g., constrain attackers to only use prefixed oracle calls.

In particular it implies equivalence between indistinguishability in a computational model
and indistinguishability for prefixed distinguishers in the prefixed computational model.

Thanks to the previous Definitions, simulatability is stable under composition operators.
This is an important feature of the notion of simulatability, as it allows to reduce the simulation
of large processes to the simulation of simpler processes.

Theorem 1. Given an oracle O, protocols P,Q, and n = N (P) ∩N (Q), if

• νn.P is O-simulatable

• νn.Q is O-simulatable

Then νn.P‖Q and νn.P ;Q are O-simulatable.

Proof. Let D be an arbitrary PTOM. By Lemma 10, there is a machine AOP s.t.

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

22

Applying once more the Lemma 10, there is a machine AOQ s. t., for every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP][AOQ]O(ρr, 1
η) = c | [[n]]ηρs = v}

We define AOP‖Q(Mf , ρr1 , θ, 1
η,m) as the machine that behaves as AOP (Mf , ρr1,P , θP , 1

η,m)

(resp. AOQ(Mf , ρr1,Q, θQ,m)) if m is a message supposed to be handled by P (resp. by Q)
(use of action determinism) Then the result is appended to θP (resp. θQ). This assumes (this
is an invariant) that θ can be split into θP and θQ.

We note that D[AOP][AOQ]O = D[AOP‖Q]O. Then we use Lemma 11 to conclude.

Alternative notions of simulatability We discuss here some variation on our notion of
simulatability. First, let us note that our notion of simulatability assumes that models are
prefixed. As demonstrated previously this is necessary in order to get an achievable notion of
simulatability. We will therefore not consider models that are not prefixed. We may consider
variants of simulatability, depending on the order of the quantifiers and sharing of randomness
between simulator and distinguisher. We define simulatability as the existence of a simulator
that works for all distinguishers. In other words our ordering of quantifier is:

∃AO(ρr1)∀D(ρr2)

In a prefixed model, we believe that switching the quantifiers lead to the same notion:

∃AO(ρr1)∀D(ρr2)⇔ ∀D(ρr2)∃AO(ρr1)

We provide no proof, but the intuition is that there exists a “universal” distinguisher, namely
the PTOM D, which performs any possible queries with uniform probability. Now, consid-
ering any other distinguisher D′, as the simulator AO for D has to provide the exact same
distribution as the protocol for each query of D, as D performs all possible queries (with very
small probability), AO will also be a correct simulator for D′.

Another alternative is to allow the simulator and the distinguisher to share the same
randomness. Then, ∃AO(ρr)∀D(ρr) seems to provide an unachievable definition. Indeed, if
the simulator is not allowed to use private randomness while the protocol is, the simulator
cannot mimic the probabilistic behavior of the protocol.

The last possibility however seems to offer an alternative definition for simulatability:

∀D(ρr)∃AO(ρr)

This seems to be a weaker definition than ours as the choices of the simulator can depend on
the ones of the distinguisher. It may simplify (slightly) the proofs for the main theorem, but
it would create issues for the unbounded replication as it would break uniformity of reductions
(since the runtime of the simulator may now depend on the environment it is running in).

3.2 Generic Oracles for Tagged Protocols

In order for our definition of simulatability to be useful, the design of oracles is a key point.
They need to be:

1. generic/simple, yet powerful enough so that protocols can be easily shown to be simu-
latable,

23

2. restrictive enough so that proving protocols in the presence of oracles is doable.

We provide here with examples of such oracles, namely generic tagged oracles for signature,
that will be parameterized by arbitrary functions, together with security properties that are
still true in the presence of tagged oracles.

In practice, protocols that use some shared secrets use tags, for instance string prefixes,
to ensure that messages meant for one of the protocol cannot be confused with messages
meant for the other one. These tags can ensure what is called “domain separation” of the two
protocols, ensuring that the messages obtained from one cannot interfere with the security of
the second protocol. These tags can be explicit, for instance by adding a fixed constant to
the messages, or implicit, where each message of a protocol depend on some fresh randomness
that can be used to define some kind of session identifier.

We define generic oracles for decryption and signatures, parameterized by an abstract
tagging function T and a secret key sk, that allow to perform a cryptographic operation with
the key sk, on any message m satisfying T (m). T can then simply check the presence of a
prefix, or realize some implicit tagging, checking that the message depends on the randomness
used by a specific session.

After defining those generic oracles, we define generic axioms, parameterized by T , that
allow to perform proofs against attackers with access to the oracle. The generic axiom for
signatures (or any other primitive) are implied by the classical cryptographic axioms.

We see tagging as a boolean function T computable in polynomial time over the inter-
pretation of messages. For instance, if the messages of protocol P are all prefixed with the
identifier idP , T is expressed as T (m) := ∃x.m = 〈idP , x〉. In a real life protocol, idP could
for instance contain the name and version of the protocol.

Intuitively tagged oracles produce the signature of any properly tagged message and allow
to simulate P .

With these oracles, an immediate consequence of the composition Theorems found in
Section 4 is the classical result that if two protocols tag their messages differently, they can be
safely composed [28]. Note that as our tag checking function is an arbitrary boolean function:
tagging can be implicit, as illustrated in our applications in Section 6.

As an example, we provide two oracles, one for encryption and one for signing, that allow
to simulate any protocol that only produces messages that are well tagged for T .

Definition 14. Given a name sk and a tagging function T , we define the generic signing
oracle OsignT,sk and the generic decryption oracle OdecT,sk as follows:

Osign
T,sk (m) := if T (m) then

output(sign(m, sk))
Odec
T,sk(m) := if T (dec(m, sk)) then

output(dec(m, sk))

Any well-tagged protocol according to T , i.e., a protocol that only decrypts or signs well
tagged messages, will be simulatable using the previous oracles. Hence we meet the goal 1
stated at the beginning of this section, as this can be checked syntactically on a protocol. We
provide, as an example, the conditions for a tagged signature.

Example 3.3. Any protocol P whose signatures are all of the form if T (t) then sign(t, sk)
for some term t (that does not use sk) is immediately νsk.P Osign

T,sk -simulatable. Indeed,

24

informally, all internal values of the protocol except sk can be picked by the simulator from
its own randomness, while all terms using sk can be obtained by calls to the tagged signing
oracle, as all signed terms in P are correctly tagged. Let us emphasize that the simulation
holds for any specific value of sk, as the distribution of outputs is the same, whether it is the
simulator that draws the internal names of P , except sk, or P itself.

As we need to perform cryptographic proofs in the presence of oracles, it is useful to
define security properties that cannot be broken by attackers with access to these oracles
(without having to consider the specific calls made to these oracles). The games defining
these properties slightly differ from the classical security games. Consider the example of
signatures and the usual EUF-CMA game. If the attacker is, in addition, equipped with an
oracle O that signs tagged messages, they immediately win the EUF-CMA game, “forging” a
signature by a simple call to O. We thus define a tagged unforgeability game (T-EUF-CMA),
derived from the EUF-CMA game, where the adversary wins the game only if they are able
to produce the signature of a message that is not tagged.

Definition 15. A signature scheme (Sign,Vrfy) is T-EUF-CMA secure for oracle O and
interpretation of keys Ask if, for any PTOM A, the game described in Figure 3 returns true
with probability (over ρr, ρs, ρO) negligible in η.

Game EUF-CMAΣ,A
T,sk(η, ρr, ρs, ρO):

List← []
(pk, sk)← ([[pk]]ρs , [[sk]]ρs)

(m, σ)← AO(ρs,ρO),Sign(pk, η, ρr)
Return ¬T (m) ∧ Vrfy(pk,m, σ) ∧m 6∈ List

Oracle Sign(m):
List← (m : List)
σ ← Sign(sk,m)
Return σ

Figure 3: Game for Tagged Unforgeability (T-EUF-CMA)

The main goal of the previous definition is to allow us to prove protocols in the presence
of oracles (hence composed with simulated ones), reaching the goal 2 stated at the beginning
of the section.

More precisely, one can, for instance, simply design a classical game based proof, reducing
the security of the protocol to the security of the T-EUF-CMA game rather than the classical
EUF-CMA game. This reasoning is valid as EUF-CMA implies T-EUF-CMA even in the
presence of the corresponding oracle.

Proposition 16. If a signature scheme (Sign,Vrfy) is EUF-CMA secure for keys given by
Ask, then (Sign,Vrfy) is T-EUF-CMA secure for the oracle Osign

T,sk and the interpretation of
keys Ask.

Remark that the base assumptions made about the cryptographic primitives are classi-
cal ones, and thus the final proof of the composed protocol only depends on some classical
cryptographic hypotheses.

4 Main Composition Theorems

We distinguish between two complementary cases. First, Theorem 2 covers protocols composed
in a way where they do not share states besides the shared secrets (e.g., parallel composition

25

of different protocols using the same master secret key). Second, Theorem 4 covers protocols
passing states from one to the other (e.g., a key exchange passing an ephemeral key to a
secure channel protocol). We finally extend these composition results to self-composition, i.e.,
proving the security of multiple sessions from the security of a single one or the security of a
protocol lopping on itself, for instance a key renewal protocol.

4.1 Composition without State Passing

Essentially, if two protocols P,Q are indistinguishable, they are still indistinguishable when
running in any simulatable context. The context must be simulatable for any fixed values
of the shared names of P,Q and the context. The context can contain parallel or sequential
composition as illustrated by the following example.

Example 4.1. Let P,Q,R, S be protocols and O an oracle. Let n = N (P‖Q) ∩ N (R‖S). If
P ∼=O Q and νn.R‖S is O-simulatable, then some applications of Theorem 2 can yield

1. P‖R ∼=O Q‖R

2. R;P ∼=O R;Q

3. (R;P)‖S ∼=O (R;Q)‖S

We generalize the previous example to any simulatable context and to n protocols. For
any integer n, we denote by C[_1, . . . ,_n] a context, i.e., a protocol built using the syntax
of protocols and distinct symbols _i, viewed as elementary processes. C[P1, . . . , Pn] is the
protocol in which each hole _i is replaced with Pi.

Example 4.2. In the three examples of Example 4.1, in order to apply the next theorem, we
respectively use as contexts

• C[_1] := _1‖R

• C[_1] := R;_1

• C[_1] := (R;_1)‖S.

In this first Theorem, no values (e.g., ephemeral keys) are passed from the context to the
protocols. In particular, the protocols do not have free variables which may be bound by the
context.

Theorem 2. Given a cryptographic library Mf and an oracle O, let P1, . . . , Pn, Q1, . . . , Qn
be protocols and C[_1, . . . ,_n] be a context such that all their channels are disjoint, 0 some
constant, n a sequence of names and c1, . . . , cn fresh channel names. If

1. N (C) ∩N (P1, . . . , Pn, Q1, . . . , Qn) ⊆ n

2. νn.C[out(c1, 0), . . . , out(cn, 0)] is O-simulatable

3. P1‖ . . . ‖Pn ∼=O Q1‖ . . . ‖Qn

26

Then
C[P1, . . . , Pn] ∼=O C[Q1, . . . , Qn]

Specifically3, there exists a polynomial pS (independent of C) such that, if pC is the polynomial
bound on the runtime of the simulator for C, we have,

AdvC[P1,...,Pn]∼=OC[Q1,...,Qn](t)

≤ AdvP1‖...‖Pn∼=OQ1‖...‖Qn
(
pS
(
t, n, |C|, pC(t)

))
Note that the bound we obtain for the reduction is polynomial in the running time of

the context. We denote by C the protocol C in which each _i is replaced with out(ci, 0).0,
where ci is a channel name and 0 is a public value. Intuitively, C abstracts out the com-
ponents Pi, only revealing which Pi is running at any time. The intuition behind the proof
of the Theorem is then as follows. First, we show that C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn
implies C[P1, . . . , Pn] ∼=O C[Q1, . . . , Qn]. This is done by a reduction, where we mainly
have to handle the scheduling, which is possible thanks to the information leaked by C, and
the action determinism of the protocols. In a sense, this means that indistinguishability for
protocols in parallel implies indistinguishability for any scheduling of those protocols. Sec-
ondly, by simulating C thanks to Proposition 7, the two hypothesis of the Theorem imply
C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn. The second part is where our notion of simulatability
comes into play, and where it is essential to deal carefully with the shared secrets.

For our latter results, we must actually generalize slightly this Theorem. A use case is for
instance when we want to prove that P‖Q ∼= P‖P implies that ifbthenP elseQ ∼= P for some
boolean condition b. In this case, we actually need to rename the channels used by P and Q
in the second protocol, so that both P and Q uses the same channels. We thus introduce a
renaming on channels σ that allows us to compose components in an arbitrary way.

The generalized version of the Theorem is as follows.

Theorem 3. Let C[_1, . . . ,_n] be a context. Let P1, . . . , Pn, Q1, . . . , Qn be protocols, and let
σ : C(P1, . . . , Pn) 7→ C such that C‖P1‖ . . . ‖Pn, C‖Q1‖ . . . ‖Qn, C[P1σ, . . . , Pnσ], C[Q1σ, . . . , Qnσ]
are protocols. Given a cryptographic libraryMf , an oracle O, if

1. n ⊇ N (C) ∩N (P1, . . . , Pn, Q1, . . . , Qn)

2. νn.C is O-simulatable

3. P1‖ . . . ‖Pn ∼=O Q1‖ . . . ‖Qn

Then
C[P1σ, . . . , Pnσ] ∼=O C[Q1σ, . . . , Qnσ]

Specifically, there exists a polynomial pS (independent of C) such that, if pC is the polynomial
bound on the runtime of the simulator for C, we have,

AdvC[P1σ,...,Pnσ]∼=OC[Q1σ,...,Qnσ](t) ≤ AdvP1‖...‖Pn∼=OQ1‖...‖Qn
(
pS
(
t, n, |C|, |σ|, pC(t)

))
3We provide, in this Theorem and the following ones, explicit advantages, as our constructions do not

directly allow for unbounded replication. This will later be used to ensure that the advantage of the adversary
only grows polynomially with respect to the number of sessions.

27

Proof. Let A be an attacker against

C[P1σ, . . . , Pnσ] ∼=O C[Q1σ, . . . , Qnσ].

In the scheduling part, we first build an attacker against

C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn.

We then remove the context C through the O-simulatability.

Scheduling part Let us construct BO,OC ,OR1
,...,ORn with either for every i, Ri = Pi, or,

for every i, Ri = Qi. BO,OC ,OR1
,...,ORn initially sets variables c1, . . . , cn to 0 (intuitively, ci

records which processes have been triggered) and sets x to the empty list. It then simulates
AO,OC[R1σ,...,Rnσ] but, each interaction with OC[R1σ,...,Rnσ] and the corresponding request (c,m)
is replaced with:

• if there exist i such that ci = 1 and c ∈ C(Riσ) then

– query ORi with (cσ−1,m)

– if ORi returns ⊥, then, if contexts C1 and C2 are such that C[_1, . . . ,_n] =
C1[_i;C2], it adds to x the channels C(C2). (This corresponds to the semantics of
sequential composition: an error message disables the continuation).

– else the answer (c′,m′) is changed (c′σ,m′) (and the simulation goes on)

• else if c ∈ C(C) and c /∈ x then

– query OC with (c,m)

– if OC answers > on channel γi, set ci = 1

– else continue with the reply of OC

This new attacker is basically simply handling the scheduling of the protocols, using the
signals raised in the context to synchronize everything. The condition that there exists i such
that ci = 1 and c ∈ C(Ri) is always satisfied by a unique i, otherwise C[P1σ, . . . , Pnσ] or
C[Q1σ, . . . , Qnσ] would not be well formed.

The execution time of B then only depends on the number of channels in C, the size of
the channel substitution σ, the number of protocols n in addition to the cost of simulating
A. Hence if t is the runtime of A, there exists pS1 such that the runtime of B is bounded
(uniformly in C, P1, . . . , Pn, Q1, . . . Qn) by pS1(n, t, |C|, |σ|):

Adv
C[P1,...,Pn]∼=C[Q1,...,Qn]

AO (t) ≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
BO,OC

(pS1(t, n, |C|, |σ|))

Simulatability Now, with the fact that νn.C is O-simulatable, we have a simulator AO
C

such that, thanks to Lemma 10, B[AO
C

]O,OR behaves exactly as BO,OC ,OR . We have, for pC
the polynomial bound on the runtime of AC , by Definition 5,

Adv
P1‖...‖Pn∼=Q1‖...‖Qn
BO,OC

(t) ≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
B[AO

C
]O

(q(pC(t) + t))

28

and finally,

Adv
C[P1σ,...,Pnσ]∼=C[Q1σ,...,Qnσ]

AO (t)

≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
B[AO

C
]O

(q(pC ◦ pS1(n, t, |C|, |σ|) + pS1(n, t, |C|, |σ|)))

Given a protocol P and a context C, for Theorem 2 to be used, we need an oracle such
that:

1. the context C is simulatable with the oracle O,

2. the protocol P is secure even for an attacker with access to O (P ∼=O Q).

Our goal is to find an oracle that is generic enough to allow for a simple proof of indis-
tinguishability of P and Q under the oracle, but still allows to simulate C. Notably, if we
take as oracle the protocol oracle corresponding to the context itself, we can trivially apply
Theorem 2 but proving P ∼=O Q amounts to proving C[P] ∼= C[Q].

Application to tagged protocols We consider two versions of SSH, calling them SSH2

and SSH1, assuming that all messages are prefixed respectively with the strings “SSHv2.0”
and “SSHv1.0”. Both versions are using the same long term secret key sk for signatures. We
assume that both versions check the string prefix.

To prove the security of SSH2 running in the context of SSH1, we can use Theorem 2. If we
denote by I the idealized version of SSH2, the desired conclusion is SSH2‖SSH1

∼= I‖SSH1.
Letting C[_1] = _1‖SSH1, it is then sufficient to find an oracle O such that:

1. νsk.SSH1 is O-simulatable (the simulatability of C directly follows),

2. SSH2
∼=O I

If we define the tagging function TSSH1 that checks the prefix, SSH1 is trivially Osign
TSSH1

,sk-
simulatable (see Definition 14) as SSH1 does enforce the tagging checks. We thus let O be
Osign
TSSH1

,sk.
Assuming that sign verifies the classical EUF-CMA axiom, by Proposition 16, it also

verifies the tagged version EUF-CMATSSH1
,sk. To conclude, it is then sufficient to prove that

SSH2
∼=O I with a reduction to EUF-CMATSSH1

,sk.

Application to encrypt and sign For performances considerations, keys are sometimes
used both for signing and encryption, for instance in the EMV protocol. In [29], an encryption
scheme is proven to be secure even in the presence of a signing oracle using the same key. Our
Theorem formalizes the underlying intuition, i.e. if a protocol can be proven secure while
using this encryption scheme, it will be secure in any context where signatures with the same
key are also performed.

29

4.2 Composition with State Passing

In some cases, a context passes a sequence of terms to another protocol. If the sequence of
terms is indistinguishable from another one, we would like the two experiments, with either
sequences of terms, to be indistinguishable.

Example 4.3. Let us consider the protocol P (x1, x2) := in(c, x).out(c, enc(x, x1, x2)). We
assume that we have a function kdf, which, given a random input, generates a suitable key for
the encryption scheme. Let a random name seed and let C[_1] := let sk = kdf(seed) in _1.
C[‖iP (ri, sk)] provides an access to an encryption oracle for the key generated in C:

C[‖iP (ri, sk)] :=
let sk = kdf(seed) in
‖i(in(c, x).out(c, enc(x, ri, sk)))

A classical example is a key exchange, used to establish a secure channel. The situation
is dual with respect to the previous theorem: contexts must be indistinguishable and the
continuation must be simulatable.

Theorem 4. Let C,C ′ be n-ary contexts such that each hole is terminal. Let P1(x), . . . , Pn(x)
be parameterized protocols, such that channel sets are pairwise disjoint. Given a cryptographic
libraryMf , an oracle O , n ⊇ N (C)∩N (P1, . . . , Pn), t1, . . . , tn, t′1, . . . , t′n sequences of terms,
C̃ := C[out(c1, t1), . . . , out(cn, tn)] and C̃ ′ := C ′[out(c1, t′1), . . . , out(cn, t′n)]. If
C̃‖in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x) is a protocol and:

1. C̃ ∼=O C̃ ′

2. νn.in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x) is O-simulatable

then C[P1(t1), . . . , Pn(tn)] ∼=O C ′[P1(t′1), . . . , Pn(t′n)]
Specifically, there exists a polynomial pS (independent of P1, . . . , Pn) such that if pO is the

polynomial bound on the runtime of the simulator for P := in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x),
we have,

Adv C[P1(t1),...,Pn(tn)]∼=OC[P1(t′1),...,Pn(t′n)](t) ≤ AdvC̃
∼=OC̃′

(
pS
(
t, n, |P |, pP (t)

))
C̃ is the context, in which all the bound values (for instance the key derived by a key

exchange) are outputted on distinct channels. C̃ ′ corresponds to the idealized version. We
can pass those bound values to another protocol P , if this protocol P can be simulated for
any possible value of the bound values.

Proof. The proof is very similar to Theorem 2.
Let us assume that we have an attacker such that

Adv

(
A
O,O

C[P1(t1),...,Pn(tn)]?C[P1(t
′
1),...,Pn(t′n)]

)
= ε0

We denote C1 = C[out(c1, t1), . . . , out(cn, tn)], C2 = C[out(c1, t′1), . . . , out(cn, t′n)], P ′1 =
in(1, x).P1(x), . . . , P ′n = in(n, x).Pn(x). We first construct an attacker against:

C1‖P ′1‖ . . . ‖P ′n ∼= C2‖P ′1‖ . . . ‖P ′n

30

Let us consider BO,OD,OP ′1 ,...,OP ′n which simulates A
O,O

C[P1(t1),...,Pn(tn)]?C[P1(t
′
1),...,Pn(t′n)] but, after

setting some variables d1, . . . , dn to 0 and some list x to the empty list, for every call to
O
C[P1(t1),...,Pn(tn)]?C[P1(t′1),...,Pn(t′n)]

of the form (c,m):

• if there exist i such that di = 1 and c ∈ C(P ′i) then

– query OP ′i with (cσ−1,m)

– if OP ′i terminates set ci = 0 and if it returns ⊥, then, with C and C ′′ such that
C[_1, . . . ,_n] = C[_i;C

′′] it adds to x the channels C(C ′′)
– else it forwards the answer (c′,m′) as (c′σ,m′)

• else if c ∈ C(C1) and c /∈ x then

– queries OD with (c,m)

– if OD answers with some ti on channel i

∗ set di = 1

∗ sends (i, ti) to OP ′i and forwards the answer

– else forwards the answer of OD

With this construction, we do have

Adv
(
BO,OC1?C2

,OP ′1
,...,OP ′n

)
= ε0

Using Lemma 4, we get a distinguisher B′ such that:

Adv
(
B′O,OC1?C2

,OP ′1‖...‖P ′n
)

= ε0

Now, with the fact that νn.P ′1‖ . . . ‖P ′n is O simulatable, we have a simulator AOP ′1‖...‖P ′n
such that thanks to Proposition 7, B′[AOP ′1‖...‖P ′n]O,OD behaves exactly as BO,OP ′1‖...‖P ′n ,OD .

We finally have Adv
(
B′[AOP ′1‖...‖P ′n]O,OC1?C2

)
= ε0.

The bound on the advantage is derived similarly to Theorem 2.

When we do so, we only assume that they are all distinct. The following example shows
how Theorems 2 and 4 can be used to derive the security of one session of a key exchange
composed with a protocol.

Example 4.4. Let us consider a key exchange I‖R where xI (resp. xR) is the key derived
by the initiator I (resp. the responder R) in case of success. We denote by KE[_1,_2] :=
I;_1‖R;_2 the composition of the key exchange with two continuations; the binding of xI

(resp. xR) is passed to the protocol in sequence. Consider possible continuations P I(xI), PR(xR)
that use the derived keys and ideal continuations (whatever “ideal” is) QI(xI), QR(xR). We
sketch here how to prove KE[P I(xI), PR(xR)] ∼= KE[QI(xI), QR(xR)] (i.e., the security of
the channel established by the key exchange). This will be generalized to multi-sessions in
Section 6. We use both Theorems 2 and 4.

Assume, with a fresh name k, that:

31

1. Oke is an oracle allowing to simulate the key exchange

2. OP,Q allows to simulate in(cI , x).P I(x)‖in(cR, x).PR(x) and
in(cI , x).QI(x)‖in(cR, x).QR(x)

3. P I(k)‖PR(k) ∼=Oke QI(k)‖QR(k)

4. KE[out(cI , x
I), out(cR, x

R)] ∼=OP,Q KE[out(cI , k), out(cR, k)]

Hypothesis 3 captures the security of the channel when executed with an ideal key, and
Hypothesis 4 captures the security of the key exchange. Both indistinguishability are for an
attacker that can simulate the other part of the protocol.

Using Theorem 2 with Hypothesis 1 and 3 yields

KE[P I(k), PR(k)] ∼= KE[QI(k), QR(k)]

Hypothesis 2 and 4 yield, with two applications of Theorem 4, one for P and one for Q, that
KE[P I(xI), PR(xR)] ∼= KE[P I(k), PR(k)] and KE[QI(xI), QR(xR)] ∼= KE[QI(k), QR(k)].
Transitivity allows us to conclude that the key exchange followed by the channel using the
produced key is indistinguishable from the key exchange followed by the ideal secure channel:

KE[P I(xI), PR(xR)] ∼= KE[QI(xI), QR(xR)]

In Theorem 4, the simulatability of

νn.in(cP , k);P (k)‖in(cQ, k);Q(k)

may be a requirement too strong in some applications. This issue will be raised when we
consider the forwarding agent of the SSH protocol, as detailed in Section 9.3, but we can
avoid it in this specific case. For more complex applications, it might be interesting in the
future to consider a weaker version of function applications where the produced key k always
satisfies a condition H(k). We could then design an oracle O so that for all names satisfying
condition H(k) we would have that P (k)‖Q(k) is O-simulatable.

4.3 Unbounded Replication

An important feature of a compositional framework is the ability to derive the security of a
multi session protocol from the analysis of a single session. To refer to multiple sessions of
a protocol, we consider that each session uses some fresh randomness that we see as a local
session identifier.

The main idea behind the Theorem is that the oracle will depend on a sequence of names
of arbitrary length. This sequence of names represents the list of honest randomness sampled
by each party of the protocol, and the oracle enables simulatability of those parties.

We provide bellow the Proposition that allows to put in parallel any number of replications
of simulatable protocols.

Proposition 17. Let Or be an oracle parameterized by a sequence of names s, and O an
oracle. Let p be a sequence of names, P (x), R1

i (x, y), . . . , Rki (x, y) and Q(x) be protocols,
such that Nl(R1

i , . . . , R
k
i) is disjoint of the oracle support. If we have, for sequences of names

lsid
1
, . . . , lsid

k, with s = {lsidji}1≤j≤k,i∈N :

32

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j
i) is Or-simulatable.

2. P (p) ∼=Or Q(p)

3. s is disjoint of the support of O.

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1
i)‖ . . . ‖i≤NkRki (p, lsid

k
i)

∼=O,Or Q(p)‖i≤N1R1
i (p, lsid

1
i)‖ . . . ‖i≤NkRki (p, lsid

k
i)

Specifically, there exists a polynomial pS (independent of all Rj) such that if pRj is the
polynomial bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i)‖...‖i≤NkRki (p,lsid

k
i)∼=OQ(p)‖i≤N1R1

i (p,lsid
1
i)‖...‖i≤NkRki (p,lsid

k
i)(t)

≤ AdvP (p)∼=O,OrQ(p)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))
In the previous proposition and following applications, we talk about sequences of names

of the form s = {lsidji}1≤j≤k,i∈N. This does not have any practical meaning and is only a
shortcut. In practice, we must have that the previous hypotheses hold for any polynomial p
and any sequence s = {lsidji}1≤j≤k,1≤i≤p(η). We will precisely define this in Section 12.

Applying the previous Proposition with P and Q as R1 and R2, we can obtain the Theorem
for the unbounded replication of a protocol, where the number of sessions depends on the
security parameter.

Theorem 5. Let Or, O be oracles both parameterized by a sequence of names s. Let p be
a sequence of names, Pi(x, y) and Qi(x, y) be parameterized protocols, such that Nl(P,Q) is
disjoint of the oracles support. If we have, for sequences of names lsidP , lsidQ, with s =

{lsidPi , lsid
Q
i }i∈N:

1. ∀ i ≥ 1, νp, lsid
P
i .Pi(p, lsid

P
i) is Or-simulatable.

2. ∀ i ≥ 1, νp, lsid
Q
i .Qi(p, lsid

Q
i) is Or-simulatable.

3. s is disjoint of the support of O.

4. P0(p, lsid
P
0) ∼=Or,O Q0(p, lsid

Q
0)

then,
||iPi(p, lsid

P
i) ∼=O ||iQi(p, lsid

Q
i)

To prove this result, we use the explicit advantages that can be derived from our com-
position Theorems, which increases polynomially with respect to the number of sessions, and
apply a classical hybrid argument to conclude.

In our applications (Section 6), the main idea is to first use Theorem 5 to reduce the
multi-session security of a key exchange or a communication channel to a single session, and
then use Theorems 2 and 4 to combine the multiple key exchanges and the multiple channels.

Remark, that in practice, to express the security properties of the protocols, we need to
allow the protocols to use a predicate T (x) whose interpretation may depend on the list of

33

honest randomness sampled by each party of the protocol. For instance, this predicate may
be used to check whether a value received by a party corresponds to a randomness sent by
another party, and we would have T (x) := x ∈ s. The two previous Theorems are in fact also
valid in such cases, and we will use such notations in the application to key exchanges, but
we delay to Section 12 the formalization of such predicates.

5 Unbounded Sequential Replication

We replicate a sequential composition where at each occurrence, a value produced by the
protocol is transmitted to the next occurrence. This corresponds to the security of a protocol
looping on itself, as it is the case for some key renewal protocols.

Such protocols depend on an original key, and are thus parameterized process of the form
P (x). As they renew the key stored in the variable x, they rebind x to some new value and
thus contain a construct of the form let x = _ in .

Proposition 18. Let O be an oracle, two parameterized processes P (x), Q(x), a set of names
n = Ng(P,Q) and fresh names k0, l. We assume that Nl(P,Q) is disjoint of the support of O.
If:

• νn.in(cP , x);P (x)‖in(cQ, x);Q(x) is O-simulatable, and

• P (k0); out(cP , x)‖Q(k0); out(cQ, x) ∼=O P (k0); out(cP , l)‖Q(k0); out(cQ, l)

then, for any N,

P (k0);P (x);N ; out(cP , x)‖Q(k0);Q(x);N ; out(cQ, x)
∼=O P (k0);P (x);N ; out(cP , l)‖Q(k0);Q(x);N ; out(cQ, l)

The main idea behind the proof is to perform as many function applications (Theorem 4)
as needed, one for each replication of the protocol. Remark that compared to the previous
replication, where we considered multiple sessions of the protocol and thus a notion of local
session identifier was required, here we consider a single session looping on itself, and we do
not need those identifiers.

Part II

Applications to Key Exchange

6 Application to Key Exchanges

Although our framework is not specifically tailored to key exchanges or any specific property,
we choose to focus here on this application. We outline how our theorems may be used to
prove the security of a protocol using a key derived by a key exchange in a compositional way.
(Let us recall that the key exchange and the protocol using the derived key may share long
term secrets).

34

6.1 Our Model of Key Exchange

In order to obtain injective agreement, key exchanges usually use fresh randomness for each
session as local session identifiers. For instance in the case of a Diffie-Hellman key exchange,
the group shares may be seen as local session identifiers.

As in Example 4.4, KE is a key exchange with possible continuations. In addition, we
consider multiple copies of KE, indexed by i, and local session identifiers lsid for each copy:

KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2

Here, id captures the identities of the parties and lsid captures the randomness that will be
used by I and R to derive their respective local session identifiers. In the key exchange, I
binds xI to the key that it computes, xIlsid to the value of lsid received from the other party
and xIid to the received identity. Symmetrically, R binds the variables xR, xRlsid and xRid.

If we denote by P Ii (xI)‖PRi (xR) the continuation (e.g., a record protocol based on the
derived secret key), KEi[P Ii (xI), PRi (xR)] is the composition of a session of the key exchange
with the protocol where the values of xI , xR (computed keys) are passed respectively to
P Ii (xI) or PRi (xR). With Q an idealized version of P (however it is defined), the security of
the composed protocol is expressed as follows:

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

Intuitively, from the adversary point of view, P is equivalent to its idealized version, even if
the key is derived from the key exchange as opposed to magically shared.

Equivalently, the security of the composed protocol can be proved if we have that the
advantage against the following indistinguishability is polynomial in N (and of course negli-
gible).

‖i≤NKEi[P Ii (xI), PRi (xR)] ∼= ‖i≤NKEi[QIi (xI), QRi (xR)]

A Corollary formalizing the following discussion can be found in Appendix F.1.

6.2 Proofs of Composed Key Exchange Security

Following the same applications of Theorems 2 and 4 as in Example 4.4, we decompose the
proof of the previous indistinguishability goals into the following goals:

1. find an oracle OP,Q to simulate multiple sessions of P or Q,

2. design an oracle Oke to simulate multiple sessions of KE

3. complete a security proof under Oke for multiple sessions of the protocol using fresh
keys,

4. complete a security proof under OP,Q for multiple sessions of the key exchange.

We further reduce the security of the protocol to smaller proofs of single sessions of the
various components of the protocols under well chosen oracles. The following paragraphs
successively investigate how to simplify the goals (1),(2),(3),(4) above. For simplicity, we only
consider here the case of two fixed honest identities.

35

In the following, we provide the conditions S-1,S-2,P-1,P-2,P-3,P-4,K-1,K-2,K-3 that must
be satisfied, so that we can prove

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

using our framework and the decomposition of Example 4.4. Corollary 2, that formalizes the
following discussion and generalizes it to non fixed identities, can be found in Appendix F.1.

We denote p = {idI , idR} and assume that they are the only shared names between KE,P
and Q and are the only names shared by two distinct copies Pi, Pj (resp. Qi, Qj). We also
denote by s = {lsidIi , lsidRi }i∈N the set of all copies of the local session identifiers.

Protocol simulatability For the simulation of the protocol, there must exists an oracle
OP,Q such that

S-1 νp.in(cI , x
I).P Ii (xI)‖in(cR, x

R).PRi (xR) is OP,Q-simulatable

Indeed, if this condition is fulfilled (and a similar one replacing P with Q), then, thanks
to Theorem 1, νp.‖i(in(cI , x

I).P Ii (xI)‖in(cR, x
R).PRi (xR)) is OP,Q-simulatable (and similarly

for Q). This meets the condition (2) of Theorem 4.

Key exchange simulatability For the simulation of the key exchange context, we need N
(with N polynomial in the security parameter) copies ofKE and, in each of them, the initiator
(resp. the responder) may communicate with N possible responders (resp. initiators). We
therefore use Theorem 2 with a context C with 2N2 holes. C is the parallel composition of
N contexts and, as above, we use Theorem 1 to get the condition (1) of Theorem 2. Let KE′i
be4

KEi[if
1≤j≤N

xIlsid = lsidRj then out(cI , 〈i, j〉) else ⊥,

if
1≤j≤N

xRlsid = lsidIj then out(cR, 〈i, j〉) else ⊥]

C is then ‖i≤NKE′i and C can be inferred by replacing each out(〈i, j〉) with a hole. We
output 〈i, j〉 so that we know that the full scheduling is simulatable. Then, the condition to
be met by the key exchange is that

S-2 νp.KE′i is Oke-simulatable

We then get, thanks to Theorem 1 the condition (1) of Theorem 2.

Security of the protocol Our goal is ‖iPi(ki) ∼=Oke ‖iQi(ki). Based on Theorem 5, we
only need an oracle Or so that:

P-1) ∀ i ≥ 1, νp, ki.P0(ki) is Or-simulatable,

P-2) ∀ i ≥ 1, νp, ki.Q0(ki) is Or-simulatable,

P-3) s is disjoint of the support of Oke,

P-4) P0(k0) ∼=Or,Oke Q0(k0).

4we denote if
1≤j≤N

ci then ai else a′ := if c1 then a1 else if c2 · · · then an else a′

36

We use the fresh names ki to model fresh magically shared keys, and use them as local sids
for Theorem 5. The intuition is similar to the notion of Single session game of [18], where the
considered protocols are such that we can derive the security of multiple sessions from one
session. For instance, if the key is used to establish a secure channel, revealing the other keys
does not break the security of one session, but allows to simulate the other sessions.

Security of the key exchange The security of the key exchange is more complicated to
define, in the sense that it cannot simply be written with a classical replication. The partnering
of sessions is not performed beforehand, so we must consider all possibilities. We may express
the security of a key exchange by testing the real-or-random for each possible session key.
We denote ki,j the fresh name corresponding to the ideal key that will be produced by the
i-th copy of the initiator believing to be partnered with the j-th copy of the responder. The
security of the key exchange is captured through the following indistinguishability:

‖i≤NKEi[out(xI), out(xR)] ∼=OP,Q
‖i≤N KEi[if

1≤j≤N
xIlsid = lsidRj then out(ki,j) else ⊥,

if
1≤j≤N

(xRlsid = lsidIj) then out(kj,i) else ⊥]

where the advantage of the attacker is polynomial in N . Remark that we sometimes omit
channels, when they only need to be distinct.

Using a classical cryptographic hybrid argument (detailed in Proposition 40), we reduce
the security of multiple sessions to the security of one session in parallel of multiple corrupted
sessions; the security of each step of the hybrid game is derived from Equation (1) using
Theorem 4. It is expressed, with stateXi = 〈xX , lsidXi , xXlsid〉, as

‖i≤NKEi[out(〈stateIi 〉), out(〈stateRi 〉)] ∼=OP,Q
‖i≤N−1KEi[out(〈stateIi 〉), out(〈stateRi 〉)]
‖ KEN [if xIlsid = lsidRN then out(〈k, lsidIN , xIlsid〉)

else if xIlsid /∈ {lsidRi }1≤i≤N−1 then ⊥,
else out(〈stateIi 〉),
if xRlsid = lsidIN then out(〈k, lsidRN , xRlsid〉)
else if xRlsid /∈ {lsidIi }1≤i≤N−1 then ⊥,
else out(〈stateRi 〉)]

(1)

The previous equivalence expresses that when we look at N sessions that all output their
full state upon completion, the particular matching of the parties in KEN has a key that is
real or random if they are indeed partnered together, and if they are not partnered together,
they must be talking to another agent from the other KEi. We may see the other sessions as
corrupted sessions, as they leak their states upon completion.

We further reduce the problem to proving the security of a single session even when there
is an oracle simulating corrupted sessions. To this end, we need to reveal the dishonest local
session’s identifiers to the attacker, but also to allow him to perform the required cryptographic
operations, e.g. signatures using the identities.

We define, for X ∈ {I,R}, sX as the set of copies of the local session identifiers of I or
R, except a distinguished one (indexed 0 below) and s = sI ∪ sR. To obtain the security of
multiple sessions of the key exchange, we use Proposition 17.5. To this end, we would need to

5We also use Theorem 1 to get the simulatability of N sessions in parallel from the simulatability of each
session.

37

design an oracle Or, such that the following assumptions are satisfied, where OP,Q corresponds
to O of Proposition 17:

K-1) ∀1 ≤ i ≤ N, νlsidIi , idI , lsidRi , idR.
KEi[out(xI), out(xR)]‖out(〈lsidRi , lsidIi 〉) is Or simulatable.

K-2) KE0[out(〈xI , lsidI0, xIlsid〉),
out(〈xR, lsidR0 , xRlsid〉)]

∼=Or,OP,Q KE0[if xIlsid = lsidR0 then out(〈k, lsidI0, xIlsid〉)
else if xIlsid /∈ sR then ⊥
else out(〈xI , lsidI0, xIlsid〉),
if xRlsid = lsidI0 then out(〈k, lsidR0 , xRlsid〉)
else if xRlsid /∈ sI then ⊥
else out(〈xR, lsidR0 , xRlsid〉)]

K-3) s is disjoint of the support of OP,Q.

Intuitively, if the initiator believes to be talking to the honest responder, then it outputs
the ideal key, and if it is not talking to any simulated corrupted party, it raises a bad event.

Note that while the structure of the proof does not fundamentally change from other
proofs of key exchanges, e.g. [18], each step of the proof becomes straightforward thanks to
our composition results. Our proofs are also more flexible, as shown by the extension to key
exchanges with key confirmation in Section 8.

7 Basic Diffie-Hellman Key Exchange

We outline here the application of our framework to the ISO 9798-3 protocol, a variant of the
Diffie-Hellman key exchange. It is proven UC composable in [13]. We use our result to extend
the security proof to a context with shared long term secrets (which was not the case in the
UC proof). We present the protocol in Figure 4, and show how to instantiate the required
values and oracles to perform the proof presented in Section 6.2. The formal proofs (using the
CCSA model [11]) are provided in Appendix C.

Our decomposition and subsequent proofs show that the DDH key exchange can be used
to securely derive a secret key for any protocol that does not rely on the long term secret
used in the key exchange. Our proof is also modular, in the sense that it could be adapted to
provide also the security when the continuation protocol uses the long term shared secret as
well.

A high level view of the protocol is given in Figure 4, and it is formally expressed in our
algebra in Figure 5, where _I and _R denote the possible continuations at the end of each
party. We use pattern matching in the inputs to simplify the notations, where for instance
in(c, 〈m,x〉) with m some constant only accepts inputs whose first projection is m, and then
bind the variable x to the second projection. If the inputs are not of the given form, the
protocols goes to an error branch.

Our goal is to apply the decomposition of Section 6.2, for some abstract continuations P
and Q that are supposed to used the derived key. We need to find suitable identities and local
session identifiers so that the Conditions from the decomposition of Section 6.2 are fulfilled.
As we do not specify P and Q, we only discuss the conditions relative to the security of the
key exchange, e.g., K-1,K-2 and K-3. Remark that those conditions are sufficient to derive a
notion similar to the classical security of a key exchange, as for any P and Q that do not share

38

Initiator
skI , ai

Receiver
skR, bi

pk(skI), g
ai

pk(skR), gbi , sign((gai , gbi , pk(skI)), skR)

sign((gbi , gai , pk(skR)), skI)

Figure 4: ISO 9798-3 Diffie Hellman Key Exchange

‖i (
Ii :=

out(〈pk(skI), g
ai〉)

in(〈xpk, xB, xm〉).
if verify(xm, xpk) = 〈gai , xB, pk(skI)〉 then

out(sign(〈xB, gai , xpk〉, skI))
let kI = xaiB in
_I

‖
Ri :=

in(〈xpk, xA〉).
out(〈pk(skR), gbi , sign(〈xA, gbi , xpk〉, skR)〉)
in(xm).
if verify(xm, xpk) = 〈gbi , xA, pk(skR)〉 then

let kR = xbiA in
_R

)

Figure 5: ISO 9798-3 Diffie Hellman Key Exchange in the Pi Calculus (omitted channels)

long term shared secrets with the key exchange. The other conditions are trivial to derive or
only rely on the security of the continuation when using an ideal key.

The identity of each party is its long term secret key, and thus, we use skI and skR as idI
and idR. Each session of the key exchange instantiates a fresh Diffie-Hellman share, that can
be seen as a local session identifier. We thus use gai and gbi as lsidIi and lsidRi . These values
can also be used as implicit tagging since any signed message either depends on ai or bi.

With those choices, we need to find a tagging function T that will provide a tagged oracle
OT such that the Conditions K of Section 6.2 are satisfied. Those Conditions, reformulated
with the current notations and with OT standing for Or, are expressed as follow:

K-1) ∀1 ≤ i ≤ N, νai, skI , bi, skR.
Ii[out(kI)]‖Ri[out(kR)]‖out(〈gai , gbi〉) is OT -simulatable.

39

K-2) I0 [out(〈kI , ga0 , xB〉)]
‖R0 [out(〈kR, gb0 , xA〉)]

∼=OT ,OP,Q

I0

 if xB = gb0 then out(〈xa0B , ga0 , xB〉)
else if xB /∈ {gbi}i≥1 then ⊥
else out(〈kI , ga0 , xB〉)

‖R0

 if xA = ga0 then out(〈xb0A , gb0 , xA〉)
else if xA /∈ {gai}i≥1 then ⊥
else out(〈kR, ga0 , xB〉)

K-3) {gai , gbi}i≥1 is disjoint of the support of OP,Q.

K-2 either corresponds to a matching conversation (i.e., all messages received by one were
sent by the other) between the sessions with sids ga0 , gb0 , in which case the output is (twice)
an ideal key k, or else it is a matching conversation with a simulated session, in which case it
outputs the computed keys. It is neither of those cases, it should not happen, and we raise
a bad event (denoted ⊥). The proof of the K-2 is thus a real-or-random proof of a honestly
produced key. We do not provide the proof of K-2 in this section, it is provided in Appendix C.

We must define an implicit tagging that allows to both have the simulatability and the
indistinguishability. Remark that first, we extend the tagging function T of Definition 14 so
that it may depend on a second argument of arbitrary length, yielding T (m, s), the corre-
sponding signing oracle being denoted Osign

T,sk,s. This is required so that the implicit tagging
may depend on all the possible local session identifiers. The exact definition of this extension
is given in Section 12.

We define the implicit tagging functions T I and TR as

T I(m, {gai , gbi}i≥1) := ∃s ∈ {ai}i≥1, ∃m1,m2.m = (m1, g
s,m2)

TR(m, {gai , gbi}i≥1) := ∃s ∈ {bi}i≥1,∃m1,m2.m = (m1, g
s,m2)

This tagging function will suit our needs, as all messages signed by the two parties follow
this pattern. Moreover, in the protocol, the value sent in the first message should match gai in
the last message. Therefore, when the protocol of Figure 4 is successfully completed, we can
prove that if xB 6= gb0 , then xB ∈ {gbi |i ≥ 1}, i.e., TR(xB, {gai , gbi}i≥1) is true (and similarly
for R).

Let s = {gai , gbi}i≥1, we finally define OT = Osign
T I ,skI ,s

,Osign
TR,skR,s

,Os, where Os simply
reveals the elements in s, we do obtain the simulatability of multiple sessions of the key
exchange (Hypothesis 1).

To adapt this proof to a concrete example, the security proof of K-2 would be performed
under an oracle OP,Q that allows to simulate the continuation (Condition P-1 of Section 6.2).
The continuation should then be proven secure when using an ideal key (Conditions P of
Section 6.2). In some cases, this step is trivial. Indeed, let us consider a record protocol
L := LI(xI)‖LR(xR), that exchanges encrypted messages using the exchanged key, and does
not share any long term secret, i.e., does not use the signing keys of the key exchange. Without
any shared secret, we do not need any oracle to simulate in(k);LI(k)‖in(k);LR(k), so we can
choose a trivial OP,Q that does nothing.

8 Extension to Key Confirmations

We present how our compositional framework can be used to prove the security of a key
exchange, in which the key is derived in a first part of the protocol and then used (key

40

confirmation) in the second part. Compared to [8], our method allows in addition sharing of
long term secrets.

Consider a key exchange I(lsidIi , id
I)‖R(lsidRi , id

R). We further split I and R into Ii :=
I0
i (lsidIi , id

I); I1
i (xI) and Ri := R0

i (lsid
R
i , id

r);R1
i (x

R), where I0
i and R0

i correspond to the key
exchange up to, but not including, the first use of the secret key (xI or xR), and I1

i and R1
i

are the remaining parts of the protocol. The intuition behind the proof of security is that at
the end of I0

i and R0
i , i.e. just before the key confirmation, either the sessions are partnered

together and the derived key satisfies the real-or-random, or they are not, which means that
the key confirmation performed by I1

i and R1
i will fail. We denote

KEi[_1,_2] := I0
i (lsidIi , id

I); I1
i (xI);_1‖R

0
i (lsid

R
i , id

R);R1
i (x

R);_2

and
KE0

i [_1,_2] := I0
i (lsidIi , id

I);_1|R
0
i (lsid

R
j , id

R);_2

We proceed as in Section 6, outlining how we may split the security proof into smaller proofs
using our framework, using the same composition Theorems at each step. We thus provide the
necessary Conditions S-1,S-2,P-1,K-1,K-2,K-3 so that, for some continuation P Ii (xI)‖PRi (xR)
and its idealized version Q,

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

A formal Corollary can be found in Appendix F.2.

8.1 Proofs with Key Confirmations

Key exchange and protocol simulatability We modify slightly the conditions S-1 and
S-2 of Section 6.2 to reflect the fact that we now consider the key confirmation to be part of
the continuation:

S-1) νp.in(x).I1(x);P I(x), in(x).R1(x);PR(x), in(x).I1(x);QI(x),
in(x).R1(x);QR(x) are OP,Q simulatable.

S-2) νp. ‖i≤N I0
i (lsidIi , id

I); if
1≤i≤N

xIlsid = lsidRj then

out(〈i, j〉)
else I1

i (xI);⊥
‖i≤N R0

i (lsid
R
i , id

R); if
1≤i≤N

xRlsid = lsidIj then

out(〈i, j〉)
else R1

i (x
R);⊥

is Oke-simulatable.

Security of the protocol Compared to Section 6.2, the continuation must be secure even
in the presence of the messages produced during the key confirmation:

P-1) ‖i≤NI1
i (xI);P Ii (xI)‖R1

i (x
R);PRi (xR) ∼=Or,Ok ‖i≤NI1

i (xI);QIi (x
I)‖R1

i (x
R);QRi (xR)

We could once again split this goal into a single session proof using Theorem 5. We remark
that to prove the security of the single session, we can further reduce the proof by using an
oracle that may simulate I1 and R1, as the security of P should not depend on the messages
of the key confirmation.

41

Platform
skP , ai

Server 1
skS , bi, ci

Server 2
skT , di

gai

let sid = hash(〈gai , gbi , gaibi〉)

let k=gaibigbi , pk(skS), sign(sid, skS)

enc(sign(sid, skP), k)

Successful login of the user on Server 1
gci

let sid2 = hash(〈gci , gdi , gcidi〉)

let k2 = gcidi

gdi , pk(skT), sign(sid2, skT)enc(sid2, k)

enc(sign(〈sid2, “forwarded”〉, skP), k) enc(sign(〈sid2, “forwarded”〉, skP), k2)

Figure 6: SSH with Forwarding Agent

Security of the key exchange We proceed in a similar way as in Section 6.2 and we use
the same notations. The following Conditions are then suitable:

K-1) ∀i ≤ N, νlsidIi , idI , lsidRi , idR.
KE0

i [out(xI), out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -simulatable

K-2) s is disjoint of the support of OP,Q.

K-3) KE0
0 [if xIlsid /∈ sR then I1

0 (xI)
else out(〈xI , lsidI0, xIlsid〉),
if xRlsid /∈ sI then R1

0(xR)
else out(〈xR, lsidR0 , xRlsid〉)]

∼=OKE ,OP,Q KE0
0 [if xIlsid = lsidR0 then out(〈k, lsidI0, xIlsid〉)

else if xIlsid /∈ sR then I1
0 (xI); out(⊥)

else out(〈xI , lsidI0, xIlsid〉),
if xRlsid = lsidI0 then out(〈k, lsidR0 , xRlsid〉)
else if xRlsid /∈ sI then R1

0(xR); out(⊥)
else out(〈xR, lsidR0 , xRlsid〉)]

The indistinguishability expresses that, if the two singled out parties are partnered, i.e.,
xIlsid = lsidR0 or xRlsid = lsidI0 , then we test the real-or-random of the key. Else, it specifies
that a party must always be partnered with some honest session, i.e., that xXlsid /∈ sY will
never occur. To this end, on one side, when xXlsid /∈ sY we run the key confirmation, and on
the other side we run the key confirmation followed in case of success by a bad event. Finally,
when two honest parties are partnered, but are not the singled out parties, they leak their
states.

9 Application to SSH

SSH [12] is a protocol that allows users to login onto a server from a remote platform. It is
widely used in the version where signatures are used for authentication. An interesting feature
is forwarding agent: once a user u is logged on a server S, they may, from S, perform another
login on another server T . As S does not have access to the signing key of u, it forwards

42

a signature request to u’s platform using the secure SSH channel between u and S. This
represents a challenge for compositional proofs: we compose a first key exchange with another
one, the second one using a signature key already used in the first.

We provide the decomposition of the security proof of SSH composed with one (modified)
forwarding agent. We use multiple times in sequence our composition Theorems, that allow us
to further simplify the required indistinguishability proofs. The corresponding indistinguisha-
bility proofs are performed in Appendix D and Appendix E.

There is a known weakness in this protocol: any privileged user on S can use the agents
of any other user as a signing oracle. Thus, in order to be able to prove the security of the
protocol, we only consider the case where there is no such privileged user. Figure 6 presents an
example of a login followed by a login using the forwarding agent. For simplicity, we abstract
away some messages that are not relevant to the security of the protocol.

In the current specification of the forwarding agent, it is impossible for a server to know
if the received signature was completed locally by the user’s platform, or remotely through
the forwarding agent. As the two behaviors are different in term of trust assumptions, we
claim that they should be distinguishable by a server. For instance, a server should be able
to reject signatures performed by a forwarded agent, because intermediate servers are not
trusted. To this end, we assume that the signatures performed by the agent are (possibly
implicitly) tagged in a way that distinguishes between their use in different parts of the
protocol. This assumption also allows for domain separation between the two key exchanges,
and thus simplifies the proof.

We consider a scenario in which there is an unbounded number of sessions of SSH, each with
one (modified) forwarding agent, used to provide a secure channel for a protocol P . Thanks to
multiple applications of Theorems 2 and 4, we are able to break the proof of this SSH scenario
into small ones, that are very close to the proof of a simple Diffie-Hellman key exchange. This
assumes the decisional Diffie-Hellman (DDH) hypothesis for the group, EUF-CMA for the
signature scheme and that the encryption must ensure integrity of the cyphertexts (this last
assumption is only required for the forwarded key exchange, where a signature is performed
over an encrypted channel). P also has to satisfy the conditions of Section 8.1. In particular,
it must be secure w.r.t. an attacker that has access to a hash that includes the exchanged
secret key, since SSH produces such a hash. Note that the scenario includes multiple sessions,
but only one forwarding. The extension would require an induction to prove in our framework
the security for any number of chained forwardings.

9.1 The SSH Protocol

The basic SSH key exchange is presented in Figure 7, with possible continuations at the end
denoted by _P and _S. In this Section, we use a strong notion of pattern matching, where
for instance in(enc(xsign, k)) is a syntactic sugar for in(x); let xsign = dec(x, k) in _.

As it is always the case for key exchanges that contain a key confirmation, the indistin-
guishability of the derived key is not preserved through the protocol. The difficulty of SSH
is moreover that once a user has established a secure connection to a server, they can from
this server establish a secure connection to another server, while using the secure channel
previously established to obtain the user credentials. We provide in Figure 8 a model of the
SSH with forwarding of agent (reusing the definitions of P and S from Figure 7). After a
session of P terminates successfully, a ForwardAgent is started on the computer. It can
receive on the secret channel a signing request and perform the signature of it. In parallel,

43

Pi :=
out(gai);
in(〈xB, pk(skS), sign〉)
let k = xaiB in
let sid = hash(〈gai , xB, k〉) in
if verify(sign, pk(skS)) = sid then
out(enc(sign(sid, skP), k));
_P .

Si :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in
out(〈gbi , pk(skS), sign(sid, skS)〉)
in(enc(xsign, k))
if verify(xsign, pk(skP)) = sid then
_S .

SSH := ‖i(Pi[0]‖Si[0])

Figure 7: Basic SSH Key Exchange

after the completion of a session of S, a distant session of P that runs on the same machine as
S can be initiated by PDistant. It will request on the previously established secret channel
the signature of the corresponding sid. Finally, as the forwarding can be chained multiple
time, at the end of a successful PDistant, a ForwardServer is set up. It accepts to receive a
signing request on the new secret channel of PDistant, forwards the request on the old secret
channel, gets the signature and finally forwards it.

The forwarding agent implies a difficult composition problem: we sequentially compose
a basic SSH exchange with a second one that uses the derived key and the same long term
secret keys. Thus, to be able to prove the security of SSH with forwarding agent, we must be
able to handle key confirmations and composition with shared long term secrets.

9.2 Security of SSH

We show how to prove the Conditions of Section 8 to the basic SSH protocol (without forward-
ing agent). We provide in Figure 9 the decomposition for key exchanges with key confirmation
corresponding to the SSH protocol. We directly specify that P and S may only relate to each
other by hard-coding the expected public keys in them. This is the classical behaviour of SSH
where a user wants to login on a specific server, and the public key of the user was registered
previously on the server.

For some abstract continuation RP (x)‖RS(x) and its idealized version QP (x)‖QS(x), our
goal would be to prove that

P 0
i ;P 1

i (xB, k)[RP (k)]‖S0
i ;S1

i (sid, k)[RS(k)] ∼= P 0
i ;P 1

i (xB, k)[QP (k)]‖S0
i ;S1

i (sid, k)[QS(k)]

Without specifying the continuation, a first step toward the security of the basic SSH key
exchange is to obtain Conditions K-1 and K-3 of Section 8. Recall that if a key exchange
satisfies those Conditions, it can be seen as a secure key exchange in the classical sense as it
can be composed with any continuation that do not share any long term secrets. The proofs
only need to ne adapted when it is not the case.

The behaviour of the protocol is very similar to the signed DDH key exchange (Figure 4)
previously studied. We can once again see the DH shares {ai, bi}i∈N as local session identifiers
that can be used to pair sessions. For each session and each party, the messages signed by this

44

PDistanti(oldk) :=
out(gai);
in(〈xB, pk(skS), sign〉)
let k = xaiB in
let sid = hash(〈gai , xB, kP 〉) in
if verify(sign, pk(skS)) = sid then
out(enc(sid, oldk))
in(enc(sign, oldk))
out(enc(sign, k))
_PD.

ForwardAgent(k) :=
in(enc(sid, k))
out(enc(sign(〈sid, “fwd”〉, skP), k))

SForwardi :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in
out(〈gbi , pk(skS), sign(sid, skS)〉)
in(enc(sign, k))
if verify(sign, pk(skP)) = 〈sid, “fwd”〉 then

_SF

SSHForward := ‖i(Pi[ForwardAgent(k)]‖SForwardi‖Si[PDistanti(k)])

Figure 8: SSH Key Exchange with Forwarding Agent

P 0
i :=
out(gai);
in(xB)
let k = xaiB in
0.

P 1
i (xB, k) :=
in(〈pk(skS), sign〉)

let sid = hash(〈ga, xB, k〉) in
if verify(sign, pk(skS)) = sid then
out(enc(sign(sid, skP), k))
_P.

S0
i :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in
out(gbi)

S1
i (sid, k) :=

out(〈pk(skS), gbi , sign(sid, skS)〉)
in(enc(sign, k))
if verify(sign, pk(skP)) = sid then
_S.

Figure 9: Divided SSH Key Exchange

45

party always depend strongly on the DH share. We can thus make all SSH sessions simulatable
with the following tagging functions and corresponding signing oracles.

TP (m, s) := ∃s ∈ {ai}i∈N, ∃m1,m = hash(gs,m1,m
s
1)

TS(m, s) := ∃s ∈ {bi}i∈N, ∃m1,m = hash(m1, g
s,ms

1)

We have that the set of axiomsAx = EUF-CMATP ,skP ,s∧EUF-CMATS ,skS ,s isO
sign
TP ,F,skP ,s

,Osign
TS ,F,skQ,s

,Oai,bi
sound thanks to Proposition 27. We use those axioms to perform the proof of K-3, where the
tagging essentially implies the authentication property. However, the proof must be slightly
stronger, when we consider that the continuations P,Q are instantiated with a second round
of SSH with a forwarding agent that uses the same long term secrets.

9.3 SSH with Forwarding Agent

For concision, we write FA for ForwardAgent, SF for SForward, and PD for PDistant.
Let us consider an abstract continuation protocol, satisfying a security property of the form
RP (k)‖RS(k) ∼= QP (k)‖QS(k) where k denotes a fresh name modelling an ideal key produced
by a key exchange.

We once again assume that the agents are only willing to communicate with the honest
identities, i.e., pk(skS) and pk(skP) are predefined in the processes. The goal is to prove the
following equivalence.

‖i (Pi[FA(k)]
‖Si[PD(k);RP (kPD)]
‖SF [RS(kSF)])

∼= ‖i (Pi[FA(k)]
‖Si[PD(k);QP (kPD)]
‖SF [QS(kSF)])

It corresponds to the fact that we should have RP (k)‖RS(k) ∼= QP (k)‖QS(k), even if the ideal
key k is replaced for each party by a key derived by a SSH key exchange (PD and SF) using
an forwarding agent (FA) based on a previous SSH key exchange (P and S).

We apply twice the decomposition of Section 8, once to show the security of the first key
exchange (as done in the previous paragraph), and that we can thus prove the security of the
second key exchange using an ideal key derived instead of the one derive by the first exchange.
The second application is then used to prove the security of this second key exchange.

First application The fist application is performed with the following Conditions (corre-
sponding to the one of Section 8), which allow to derive the desired conclusion.
K-3):

P 0
0 ; if xB /∈ s then

P 1
0 (xB, k); out(k)

else out(k, ga0 , xB)
‖S0

0 ; if xA /∈ s then
S1
i (xA, k); out(k)

else out(k, gb0 , xA)

∼=OPS ,Oforward

P 0
0 ; if xB = gb0 then

out(k, ga0 , xB)
else if xB /∈ s then
P 1(xB, k); bad

else out(k, gb0 , xA)
‖S0

0 ; if xA = ga0 then
out(k, gb0 , xA)

else if xB /∈ s then
S1

0(xA, k); bad
else out(k, gb0 , xA)

46

P-1):

‖iP 1
i (k)[FA(k)]‖S1

i (k)[PD(k);RP]‖SF [RS] ∼=OKE1
‖iP 1

i (k)[FA(k)]‖S1
i (k)[PD(k);QP]‖SF [QS]

We use the following oracles:

• OPS allows to simulate (K-1) the other honest sessions of P and S, it corresponds to
Osign
TP ,F,skS ,s

,Osign
TS ,F,skP ,s

,Oai,bi of Section 9.2.

• Oforward allows to simulate (S-1) the continuation, i.e., protocols of the form
in(k);P 1(k)[FA(k)]‖in(k);S1(k)[PD(k);RP]‖SF [RQ]

• OKE1 allows to simulate (S-2) ‖i(Pi‖Si) (it is identical to OPS).

All simulations are performed under νskS , skP . To define Oforward , we need to settle an
issue. Indeed, for hypothesis S-1, we need to provide an oracle that can simulate sessions of
the forwarding protocols. However, in order to get the simulatability of in(k).FA(skP , k), one
must give a generic signing oracles to the attacker, which would obviously make the protocol
insecure. Based on the assumption that the forwarded sessions perform signatures tagged with
“fwd ′′ (as shown below), we can however provide a signing oracle for such messages only. It
allows for the simulatability of the forwarding agent and of the forwarded client and server.
More specifically, recall the the forwarding agent is of the form:

FA(skP , k) :=
in(enc(sid, k));
out(enc(sign(〈sid, “fwd”〉, skP), k))

We may obtain its simulatability with the following tagging function:

Tfor (m, s) := ∃m1. m = 〈m1, “fwd”〉

Then, Oforward is simply Osign
Tfor ,F,skP ,s

,Osign
Tfor ,F,skS ,s

,Oa′i,b′i . We prove Condition K-3 under
the corresponding EUF-CMA axioms in Appendix E.

Second application We further simplify Condition P-1 of the previous paragraph with a
second application of the decomposition of Section 8. We now denote s′ = {a′i, b′i}i∈N. PDi

and SFi are split into PD0
i , PD

1
i and SF 0

i , SF
1
i similarly to the split of Figure 9 before and

after the key confirmation. The tagging functions used are only slight variations of the tagging
functions for the first SSH key exchange:

T ′P (m, s′) := ∃i,∃X,m = 〈hash(ga
′
i , X,Xa′i), “fwd”〉

T ′S(m, s′) := ∃i,∃X,m = 〈hash(X, gb
′
i , Xb′i), “fwd”〉

We then need to prove the Conditions:

47

K-3):
P 1

0 (k);FA(k)‖S1
0(k);PD0

0(k); if xB /∈ s′ then
PD1

0(xB, k); out(k)

else out(k, ga
′
0 , xB)

‖SF 0
0 ; if xA /∈ s′ then

SF 1
0 (xA, k); out(k)

else out(k, gb
′
0 , xA)

∼=OKE1
,OkFPS ,ORQ

P 1
0 (k);FA(k)‖S1

0(k);PD0
0; if xB = gb

′
0 then

out(k, ga
′
0 , xB)

else if xB /∈ s′ then
PD1

0(xB, k); bad

else out(k, gb
′
0 , xA)

‖SF 0
0 ; if xA = ga

′
0 then

out(k, gb
′
0 , xA)

else if xB /∈ s′ then
SF 1

0 (xA, k); bad

else out(k, gb
′
0 , xA)

Note that k is a fresh name that could be considered as a long term secret, i.e., in p.
And P-1):

‖iPD1
i (k
′);RP (k′)‖SF 1

0 (k′);RS(k′) ∼=OKE1
,OFPS ‖

iPD1
i (k
′);QP (k′)‖SF 1

i (k′);QS(k′)

With the oracles:

• OkFPS allows to simulate (K-1) the other honest sessions of PD and SF , it corresponds
to Osign

T ′P ,skS ,s
,Osign

T ′S ,skP ,s
,Oa′i,b′i of Section 9.2.

• ORQ allows to simulate (S-1) the continuation, i.e., protocols of the form

in(k);PD1(k);RP (k)‖in(k);SF 1(k);RQ(k)

We prove Condition K-3 under the corresponding EUF-CMA axioms in Appendix E.
Remark that to ensure that the forwarding agent only signs the sid sent by PD, it is required
that the encryption scheme is an authenticated encryption scheme.

Part III

Composition in the CCSA logic

10 Oracles in the CCSA Logic

We extend the semantics of the CCSA logic so that it now refers to attackers that can have
access to an extra oracle O. We then lift the notion of soundness for the axioms to support
oracles, defining the notion of O-soundness.

48

10.1 Syntax and Semantics

While the cryptographic library of the CCSA logic stays as is, the computational model must
now also depend on some oracle that is given to the attacker, and the corresponding random
oracle tape.

Definition 19. A computational model M is an extension of a cryptographic library Mf ,
which provides an oracle O, and an additional PTOM AOg for each symbol g ∈ G, that takes
as input an infinite random tape ρr, a security parameter 1η and a sequence of bitstrings.

We define the interpretation of extended terms as, givenM, η, σ, ρs , ρO and ρr:

• [[n]]η,σM,ρs,ρr,ρO
:= An(1η, ρs) if n ∈ N

• [[x]]η,σM,ρs,ρr,ρO
= [[xσ]]η,σM,ρs,ρr,ρO

if x ∈ X

• [[f(u)]]η,σM,ρs,ρr,ρO
= Af (1η, [[u]]η,σM,ρs,ρr,ρO

) if f ∈ Σ

• [[g(u)]]η,σM,ρs,ρr,ρO
= AO(ρs,ρO)

g ([[u]]η,σM,ρs,ρr,ρO
, ρr, 1

η) if g ∈ G

We also adapt the definition of the interpretation of ∼.

Definition 20. Given a computational model M, including an oracle O, two sequences of
terms t, u, and an assignment σ of the free variables of t, u to ground terms, we haveM, σ |=O
t ∼ u if, for every polynomial time oracle Turing machine AO,

|Pρs,ρr,ρO{AO(ρs,ρO)([[t]]σ,ηρs;ρr;ρO , ρr, 1
η) = 1}

−Pρs,ρr,ρO{AO(ρs,ρO)([[u]]σ,ηρs;ρr;ρO , ρr, 1
η) = 1}|

is negligible in η. Here, ρs, ρr, ρO are drawn according to a distribution such that every finite
prefix is uniformly sampled.

10.2 Oracle Soundness

To perform proofs in the logic, we need to design axioms that are sound w.r.t. an attacker
that has access to O; we say that the axiom is O-sound in this case. They should be easy to
verify for actual libraries, yet powerful enough for the proofs that we intend to complete. The
purpose of this Section is to provide such axioms. We first extend the notion of soundness to
oracles.

Definition 21. Given a family of computational models F using oracle O, a set of first order
formulas A is O-sound (w.r.t. F) if, for every ψ ∈ A, everyM∈ F ,M |=O ψ.

With such a definition, if A is O-sound (w.r.t. F) and A |= φ (where φ is a closed formula),
then, for everyM∈ F ,M |=O φ.

Example 10.1 (Function application). For any O, F , function f , terms t1, . . . , tn, u1, . . . , un

t1, . . . , tn ∼ u1, . . . , un =⇒ f(t1, . . . , tn) ∼ f(u1, . . . , un)

is O sound.

49

Example 10.2. Given a single key encryption oracle O for key k, the formula

enc(0, r, k) ∼ enc(1, r, k)

is

• not sound (nor O-sound) in general,

• sound but not O-sound for non randomized SPRP encryption,

• O-sound for IND-CPA encryption.

Note that the axioms that are designed in [11] cannot be borrowed directly. For instance,
n ∼ n′, where n, n′ are names, is a standard axiom: two randomly generated numbers of the
same length cannot be distinguished. However, if either n or n′ is in the support of O, some
information on their interpretation can be leaked by the oracle. The axiom n ∼ n′ is sound,
but not O-sound. We have to modify this axioms as follows:

Lemma 22. For any oracle O with support n, the axiom ∀k, k′ /∈ n, k ∼ k′ is O-sound.

Proof. We are given a cryptographic library, and oracle O with support n, and two names k,
k′ not in the support. We are also given AO which is a distinguisher over k ∼ k′. We define
a PTTM A′ which on input (m, ρr, 1

η):

• Splits ρr into three distinct infinite tapes ρso, ρra, ρro.

• Simulates AO(ρso,ρro)(m, ρra, 1
η).

Let us a prove that A′ is a distinguisher over k ∼ k′, which contradicts the unconditional
soundness of this axiom when there is no oracle.

We denote by πk(ρs, η) the tapes where every bit of ρs which does not correspond to a
name of k is set to 0, and similarly πkc(ρs, η) where all bits for k are set to 0. We then have
for any PTOM AO:

Pρs,ρr,ρO{AO(ρs,ρO)([[k]]σ,ηρs , ρr, 1
η) = 1}

=1 Pρs,ρr,ρO{AO(πk(ρs,η),ρO)([[n]]σ,ηπkc (ρs,η), ρr, 1
η) = 1}

=2 Pρs1,ρs2,ρr,ρO{AO(ρs1,ρO)([[n]]σ,ηρs2 , ρr, 1
η) = 1}

=3 Pρso,ρs,ρra,ρro{AO(ρso,ρro)([[k]]σ,ηρs , ρra, 1
η) = 1}

=4 Pρs,ρr{A′([[k]]σ,ηρs , ρr, 1
η) = 1}

1. Thanks to the definition of support, the oracle answers the same on πk(ρs, η) and ρs;

2. we split ρs in two, to replace independent tapes πk(ρs, η) and πkc(ρs, η);

3. we rename random tapes;

4. by construction of A′.

This shows that A′ has the same advantage as AO against k ∼ k′, which concludes the
proof.

Other axioms in [11] can be extended without problem. For instance the transitivity of ∼
or the function application axiom:

50

Lemma 23. For any O, f ∈ F , terms t1, . . . , tn, u1, . . . , un

t1, . . . , tn ∼ u1, . . . , un =⇒ f(t1, . . . , tn) ∼ f(u1, . . . , un)

is O sound.

In general, what we have is that any axiom independent from the oracle support is sound.

Lemma 24. For any O, and terms t, s, such that all names in t, s do not appear in supp(O),
we have that t ∼ s is sound if and only if t ∼ s is O-sound.

This allows us to derive, given an oracle and a recursive set of axiom, the set of axioms
which is sound w.r.t. an oracle.

For instance, the general DDH axiom is, for any names a, b, c, ga, gb, gab ∼ ga, gb, gc. If we
denote by s the support of some oracle, the O-sound DDH version is simply the set of formulas
DDHs for all name a, b, c /∈ s, ga, gb, gab ∼ ga, gb, gc. Here, the notation gx corresponds to
g(n)r(x), where g is the function which extracts a group generator and r the function which
evaluates names into exponents. We may consider that we have two interpretations of those
function such that DDH holds.

EUF-CMA We define a CCSA version of the tagged EUF-CMA axiom. It is a direct
adaptation of the CCSA EUF-CMA axiom to match the behaviour of the tagged EUF-CMA
axiom (Figure 3).

Definition 25. Given a name sk and a function symbol T , we define the generic axiom scheme
EUF-CMAT,sk as, for any term t such that sk is only in key position:

if (checksign(t, pk(sk)))
then T (getmess(t))

.∨
sign(x,sk)∈St(t) (t

.
= sign(x, sk))

else >

∼ >

The tagged signing oracles is defined as previously, only adding the extra argument to the
tagging function.

Definition 26. Given a name sk and a function T , we define the generic signing oracle OsignT,sk

as follows:

Osign
T,sk (m) := if T (m) then output(sign(m, sk)))

Proposition 27. For any computational model in which the interpretation of sign is EUF-CMA,
any name sk, and any boolean function T , EUF-CMAT,sk is Osign

T,sk -sound.

Proof. Let us assume that soundness is violated. We then have a term t and a computational
model such that t does not satisfy EUF-CMAT,sk. It means that the formula on the left
hand side holds. As in t the secret key sk only occurs in key positions, we can simulate t by
sampling all names, performing applications of function symbols, and sometimes calling the
oracle Osign

sk to obtain a signature. t may also depend on attacker function symbols that have

access to an oracle Osign
T,sk . Thus, we can build a PTOM AO

sign
T,sk,O

sign
sk that produces exactly the

same distribution of t for any fixed value of sk.
Let BO

sign
sk be the PTOM which:

51

• simulates AO
sign
T,sk , by sampling all names itself, except sk;

• for every call made by A to Osign
T,sk with input m, B checks that T (M) holds, and if it is

the case query the signing oracle to get the signature, else fails.

The probability distribution of BO
sign
sk is exactly the same as AO

sign
T,sk,O

sign
sk , so BO

sign
sk also

produces an output o which violates the EUF-CMAT,sk axiom. We thus have that o is a
valid signature, and is either not well tagged or does not correspond to a sub-term of t.

As all calls to Osign
sk made by B either correspond to a well tagged message or to a sub

term of t, we know that o does not correspond to a signature produced by the signing oracle.
BO

sign
sk is thus an attacker which given access to a signing oracle can produce a signature for a

message not signed by the oracle, i.e., an attacker which can win the EUF-CMA axiom.

11 Computational Soundness of the logic

11.1 Protocols

Given a protocol P , we reuse from [11] the definition of Φ(fold(P)) which we will denote tP .
It is only needed for technical proofs. We remark here that with the notations of [11], we
would have ρ1 = ρs and ρ2 = ρr.

The correction of the term representing a protocol with respect to the protocol oracles is
given by the following Lemma.

Lemma 28. Given a protocol P (which is action deterministic), a functional model Mf , an
oracle O, a security parameter η ∈ N, an history tape θ = ∅, tP = t1P , . . . , t

n
P , σ := {x1 7→

d1, . . . , xn 7→ dn} an assignment of the free variables in tP to D, for every ρs, ρr, ρO,

[[t1P]]σ,ηρs,ρr,ρO , . . . , [[t
n
P]]σ,ηρs,ρr,ρO =

OP (ρs, ∅)(d1(ρs, ρr, η, ρO)), . . . ,OP (ρs, d1(ρs, ρr, η, ρO), . . . , dn−1(ρs, ρr, η, ρO))(dn(ρs, ρr, η, ρO))

Proof. While straightforward, the proof relies on the definitions of protocol execution in a
model defined in [11] and the soundness of the folding, which we do not recall here. We
extendMf into a computational modelM in such a way that

[[gi]]([[t
1
P]]σ,ηρs,ρr,ρO , . . . , [[t

i−1
P]]σ,ηρs,ρr,ρO , ρr) = di(ρs, ρr, η, ρO)

for i = 1, . . . , n. We then have [[tP]]M = [[t1P]]σ,ηρs,ρr,ρO , . . . , [[t
n
P]]σ,ηρs,ρr,ρO .

The folding soundness from [11] implies that P ∼M fold(P). The proof actually im-
plies pointwise equality of the executions of P and fold(P) in M. If we denote ψ(P) (resp
ψ(fold(P))) the sequence of outputs of the execution of P (resp fold(P)) in this model, we
thus have that ψ(P) = ψ(fold(P)).

We directly have by definition of the tP that [[tP]]M = [[Φ(fold(P)]]M = ψ(fold(P)).
Finally, by construction of OP which emulates exactly the execution of P we have ψ(P) =
OP (ρs, ∅)(d1(ρs, ρr, η, ρO)), . . . ,OP (ρs, d1(ρs, ρr, η, ρO), . . . , dn−1(ρs, ρr, η, ρO))(dn(ρs, ρr, η, ρO))
which concludes the proof.

52

11.2 Introduction of attacker’s functions

As in [11], we may replace the variables occurring in the protocol P (or its folding tP) with
terms that include the attacker functions g ∈ G.

If tP = t0P , . . . , t
n
P , we let t̃P = t̃0P , . . . , t̃

n
P be the sequence of terms defined by:

• t̃0P = t0P {x0 7→ g0()} and φP0 = ∅

• t̃i+1
P = ti+1

P {x0 7→ g0(), x1 7→ g1(φP1), . . . , xi+1 7→ gi+1(φPi+1)} and φPi+1 = φPi , t̃
i+1
P

We then denote σP the substitution {x0 7→ g0(), x1 7→ g1(φP1), . . . , xn 7→ gn(φPn)}.
There is exactly one attacker function for every message produced by the protocol, and the

function symbol are defined independently from the protocol.The functions are placeholder
for the attacker actions, whom we give the previous answers he may have obtained in the
protocol.

Example 11.1. We consider the protocol which for a given key sk, will allow the at-
tacker to perform one decryption and will then output an encryption. We may have tP =
dec(x, sk), enc(y, r, sk), where x and y are the two expected inputs. Then t̃P = dec(g0()), sk), enc(g1(dec(g0()), sk), r, sk).
When we interpret this term, the attacker can choose the evaluation of g0 and g1. He can at
first provide the protocol with a message and obtain its decryption, and can then compute a
new message, maybe based on the previous decryption he obtained.

Once we have fixed the cryptographic library, and we consider two protocols P and Q, a
computational such that t̃P 6∼ t̃Q means that we have multiple PPTOMs which can compute
messages so that in the end, a final PPTOM can distinguish the two protocols. We may from
those machines reconstruct a single machine, which is an attacker against P ∼=O Q. Conversely,
an attacker against P ∼=O Q may be split into multiple machines, so that a machine computes
the next message given by the attacker to the protocol, those machines providing in the end
a computational model such that t̃P 6∼ t̃Q.

Formally, we have the computational soundness of our oracle indistinguishability.

Lemma 29. Given two protocols P,Q, random tapes ρr, ρs, a cryptographic library Mf and
an oracle O, we have:

∀M ⊃Mf . M |=O t̃P ∼ t̃Q
⇔

P ∼=O Q

We finally have a result of computational soundness. We write Ax |= φ if the set of
formulas Ax and the formula ¬φ are inconsistent.

Theorem 6. Given P,Q two protocols, O an oracle, A a set of axioms ,Mf a cryptographic
library we assume that:

• A is O-sound w.r.t F = {M ⊃Mf}

• A |= t̃P ∼ t̃Q

Then P ∼=O Q

53

Proof. Let us assume that we have a distinguisher on AO,OP?Q and that A is O-sound.
With Lemma 29 we have a computational model M ⊃ Mf such that M |=O t̃P 6∼ t̃Q.

As A is O-sound, we also haveM |=O A, and this contradicts the fact that the formulas are
inconsistent.

We reduce computational indistinguishability to an inconsistency proof on the one hand
and a soundness proof of the axioms on the other hand.

12 Extension to the Model for Unbounded Replication

Recall that for unbounded replications, we used notations such as x /∈ s, for infinite sequences
of names s. While the previous extension is enough to handle our composition results, we need
for our applications to key exchanges to be able to express formally those predicates. To this
end, for any name n of arity l, we give a formal interpretation to n, that intuitively models
the sequence of names n1,...,1, . . . , nr1,...,rl of length polynomial in the security parameter.

We define the syntax and provide variations of the axioms that can be used to reason
in this context. We then provide the concrete semantics so that these axioms are sound as
technical details.

We provide a way to support infinite sequences in the CCSA logic, but note that our
composition framework does not always require infinite sequences. When considering basic
key exchanges, it is enough to use cofinite sequences. Basically, if the property

KE0[if xIlsid = lsidR0 then out(k) else out(xI0), if xRlsid = lsidI0 then out(k) else out(xR0)]

holds even when the attacker can simulate corrupted sessions, it is enough to derive the
security of multiple sessions. It is interesting, as this property does not rely on infinite se-
quences.

To understand this, let us briefly consider a basic unsigned Diffie Hellman key exchange.
It must of course not verify the previous property. The exchange shares are ga0 , gb0 . To
break the previous property, we can give as a share to I the correct gb0 , I will then produce
depending on the side k or ga0b0 . If we provide R with ga0 × ga0 , R does not believe to be
paired with I and it then always output as key g2a0b0 . One can then easily distinguish if the
output of R is the square of the output of I.

Basically, this stems from the fact that always outputting the actual key leaks information
to the attacker when agents are not paired together.

For key exchanges with key confirmation, we wish to test the real or random before we
have any authentication (as the authentication may come from the key confirmation). So if
we always leak the key of the agent, the property will not be verified. However, we do need to
leak the key to enable to go from one session to multiple sessions (to give the attacker enough
information for the simulatability). The idea is then, as expressed in the previous Theorems,
to only leak the key when two “honest” parties are paired together. Else, we execute the
key confirmation, which should fail. Here, we have an explicit need to be able to test which
sessions are honest, whether they are corrupted or not, and this for an unbounded number of
sessions. Hence the need for a test based on infinite sequences.

Syntax Recall that names are defined with an arity, where a name n of index arity l can
be indexed by l integers, yielding a distinct copy of the name for each indexes. Moreover, in

54

a protocol, the index variables occurring in names must all be bound through a parallel or a
sequential binder, and thus once we consider the term corresponding to the protocol in the
CCSA logic, all names appear without index variables.

For any name n of index arity l, the syntax of terms in the CCSA logic only contained all
the copies nk1,...,kl for k1, . . . , kl ∈ N as symbols of arity 0 (a constants of the term algebra).
For each name n, we add to the syntax of terms the symbol seqn of arity 0. We also provide
a function symbol ∈ using infix notation, so that t ∈ seqn is now in the syntax.

Axioms The classical α-renaming axiom still holds, but all copies of a name are renamed
at once. Thus, for any sequences of terms t, and any names n, n′ of index arity l such that n′

does not occur in t, we have:

(1) t ∼ t{seqn 7→ seqn′} ∪ {nk1,...,kl 7→ n′k1,...,kl | k1, . . . , kl ∈ N}

Furthermore, we also provide axioms that allow to reason about the membership predicate,
defined as:

(2) nk1,...,kl ∈ seqn ∼ true for any name n and all k1, . . . , kl ∈ N;

(3) n′k1,...,kl ∈ seqn ∼ false for any name n′ distinct of n and all k1, . . . , kl ∈ N.

Remark that as ∈ is a boolean function symbol, it is in contradiction with its negation
and we trivially have that that for any term t and name n,

t ∈ seqn ∧ t /∈ seqn ∼ false

This is actually what is used in our proofs of indistinguishability, as tagged oracles in our
applications provide messages m such that we have f(m) ∈ seqn for some function f , and the
security property raises bad if f(m) /∈ seqn.

Semantics The idea is that seqn should model all sequences seqn = {n1, . . . , np(η)} for any
polynomial p. Then, if an indistinguishability holds for all such sequences for all polynomials,
it also holds when the polynomial is bigger than the running time of the distinguisher, and
the sequence then models an infinite sequence. To model this, the interpretation of a term
t may now depend on some polynomial p with one indeterminate and with positive integer
coefficients given to the PTTMs, and the interpretation is denoted [[t]]η,σM,p,ρs,ρr,ρO

.
The indistinguishability predicate ∼ is now interpreted as indistinguishability for all dis-

tinguishers and all polynomials p. Definition 20 now becomes:

Definition 30. Given a computational model M, including an oracle O, two sequences of
terms t, u, and an assignment σ of the free variables of t, u to ground terms, we haveM, σ |=O
t ∼ u if, for any strictly increasing polynomial p and every polynomial time oracle Turing
machine AO,

|Pρs,ρr,ρO{AO(p,ρs,ρO)([[t]]σ,ηM,p,ρs;ρr;ρO
, ρr, 1

η) = 1}
−Pρs,ρr,ρO{AO(p,ρs,ρO)([[u]]σ,ηM,p,ρs;ρr;ρO

, ρr, 1
η) = 1}|

is negligible in η. Here, ρs, ρr, ρO are drawn according to a distribution such that every finite
prefix is uniformly sampled.

55

So, we can now assume that the interpretation of terms may depend on a polynomial p.
We previously assumed for a name ni, that the cryptographic library was providing a distinct
Turing Machine for each copy of the name, i.e., a machine Ank for each k ∈ N. However, to
build a machine that can interpret seqn, all the copies of the name must be extracted in a
uniform way, so that it is possible to collect all of them in polynomial time. To this end, we
now consider that a cryptographic library provides, for each name ni of index arity l, a Turing
Machine An that takes as input the security parameter, the random tape ρS and l integers,
and returns a sequence of bitstrings of length η extracted from ρs. Then, the interpretation
of the name nk1,...,kl , with k1, . . . , kl ∈ N is, givenM, η, σ, ρs , ρO and ρr.

[[nk1,...,kl]]
η,σ
M,p,ρs,ρr,ρO

:= An(1η, ρs, k1, . . . , kl)

The set of all the An should use distinct parts of the random tape ρs, and each An should
return distinct parts of the tape for each sequence of integers given as integers. This can be
done for instance if ρs is seen as a folding of random tapes ρs,n in a single tape, such that
each An only accesses bits corresponds to ρs,n through the inverse folding (this essentially
corresponding to bijective mappings from Nk to N). Then, for each sequence of integers
k1, . . . , kl, An extracts from ρs,n a unique sequence of bits by computing a bijection f from
Nl to N, and extracting the bitstrings of length η at position η × f(k1, . . . , kl).

Using this new interpretation for names, we now define the semantics of seqn, for any name
n of index arity l, as, givenM (that now contains a polynomial p), η, σ, ρs, ρO and ρr,

[[seqn]]η,σM,p,ρs,ρr,ρO
:= Aseqn(1η, p, ρs)

where Aseqn is the machine that:

• contains l nested loops over the l variables c1, . . . , cl all ranging from 1 to p(η);

• at each iteration, simulate An(1η, ρs, c1, . . . , cl) and appends its result to the output
tape.

Remark that given a modelM, and thus the machine An, we completely fix the machine Aseqn .
Essentially, Aseqn will produce the sequence of bitstring corresponding to the interpretation
of n1,...,1, . . . , np(η),...,p(η).

The CCSA axioms presented previously are still sound in this semantics. Essentially, this
is because when the axiom scheme does not depend on any seqn, all the occurrences of seqn in
terms satisfying the guards of the scheme can be simulated by an attacker who samples p(η)
randoms.

Lemma 31. For any computational model in which the interpretation of sign is EUF-CMA,
any name sk, EUF-CMAT,sk is Osign

T,sk -sound even for terms that may depend on some seqn.

Proof. We have a term t, a computational model and a polynomial p such that the interpre-
tation of t where all sequences seqn are of length p(η) contradicts the EUF-CMAT,sk axiom.

The proof is exactly the same as Proposition 27, as we can once again from t build a Turing
Machine that samples all names but sk (and may thus sample p(η) names for each sequence),
and is then able to simulate all operations of t.

This means that we can safely consider a version of EUF-CMAT,sk where for instance
T (x) is of the form x ∈ seqn and still have the soundness of the axiom. Remark that this
proof would hold similarly for other cryptographic axioms.

We however have to prove the soundness of the axioms that are specific to seq.

56

Proposition 32. Axioms (1),(2) and (3) are sound in all models where the interpretation of
∈ is given by the machine A∈(1η, x1, x2) that checks if x1 is a bitstring of length η and returns
true if and only if x1 is a sub-string of x2 starting at a position which is a multiple of η.

Proof.

1. The alpha-renaming axiom is sound, unconditionally. This is similar to the classical
CCSA logic alpha-renaming axiom, which holds as all randomness for a given name
(of any arity) are completely independent and uniform. Replacing all occurrences of a
name by a another fresh one thus yields exactly the same distribution. In essence, we
replace in the interpretation of t all occurrences of An and Aseqn by An′ and Aseqn′ .
As the machines for n′ did not occur previously in the interpretation of t, we indeed
have that the machines of n and of n′ produce the same independent distribution for
the interpretation of t.

2. Given nk1,...,kl and seqn, we have for any polynomial p strictly increasing that for η large
enough, ki ≤ p(η) for 1 ≤ i ≤ l. Thus, for η large enough, the interpretation of seqn
contains the result of An(1η, ρs, k1, . . . , kl) (simulated by Aseqn), and A∈ always output
true. The advantage of any attacker then becomes 0 which is negligible.

3. The probability of collision between two sequences of bitstrings of length η is 1
2η . For

any polynomial p, as seqn is a uniform sampling of length p(η) × η, and n′k1,...,kl is an
independent uniform sampling of length η, the probability that n′k1,...,kl occurs in seqn
at a position which is a multiple of η is the probability 1− (1− 1

2η)p(η). Thus, A∈ will
answer true with only a negligible probability.

As the interpretation A∈ given in the previous proposition corresponds to the interpreta-
tion required in the application to key exchanges (Section 6), we can indeed use those axioms
in proofs of key exchange security.

References

[1] R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, 2000. [Online]. Available: http://eprint.iacr.org/2000/067

[2] R. Canetti and T. Rabin, “Universal Composition with Joint State,” in Advances in
Cryptology - CRYPTO 2003, ser. Lecture Notes in Computer Science, D. Boneh, Ed.
Springer Berlin Heidelberg, 2003, pp. 265–281.

[3] M. Backes, B. Pfitzmann, and M. Waidner, “The Reactive Simulatability (RSIM)
Framework for Asynchronous Systems,” Inf. Comput., vol. 205, no. 12, pp. 1685–1720,
Dec. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.ic.2007.05.002

[4] D. Hofheinz and V. Shoup, “GNUC: A New Universal Composability Framework,”
Journal of Cryptology, vol. 28, no. 3, pp. 423–508, Jul. 2015. [Online]. Available:
https://doi.org/10.1007/s00145-013-9160-y

57

http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1007/s00145-013-9160-y

[5] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters, “Conditional reactive simulatabil-
ity,” Int. J. Inf. Sec., vol. 7, no. 2, pp. 155–169, 2008.

[6] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch, “iUC: Flexible Universal Compos-
ability Made Simple,” Tech. Rep., 2019.

[7] U. Maurer, “Constructive cryptography - A new paradigm for security definitions and
proofs,” in TOSCA, ser. Lecture Notes in Computer Science, vol. 6993. Springer, 2011,
pp. 33–56.

[8] C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams, “Less is
more: relaxed yet composable security notions for key exchange,” International Journal
of Information Security, vol. 12, no. 4, pp. 267–297, Aug. 2013. [Online]. Available:
https://doi.org/10.1007/s10207-013-0192-y

[9] B. Blanchet, “Composition Theorems for CryptoVerif and Application to TLS 1.3,” in
31st IEEE Computer Security Foundations Symposium (CSF’18). Oxford, UK: IEEE
Computer Society, Jul. 2018, pp. 16–30.

[10] C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and M. Kohlweiss, “State
separation for code-based game-playing proofs,” in ASIACRYPT (3), ser. Lecture Notes
in Computer Science, vol. 11274. Springer, 2018, pp. 222–249.

[11] G. Bana and H. Comon-Lundh, “A computationally complete symbolic attacker for
equivalence properties,” in Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS’14), G.-J. Ahn, M. Yung, and N. Li, Eds.
Scottsdale, Arizona, USA: ACM Press, Nov. 2014, pp. 609–620. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BC-ccs14.pdf

[12] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport Layer Protocol.” [Online].
Available: https://tools.ietf.org/html/rfc4253

[13] R. Küsters and D. Rausch, “A Framework for Universally Composable Diffie-Hellman
Key Exchange,” in IEEE 38th Symposium on Security and Privacy (S&P 2017). IEEE
Computer Society, 2017, pp. 881–900.

[14] G. Scerri and S.-O. Ryan, “Analysis of Key Wrapping APIs: Generic Policies,
Computational Security.” IEEE Computer Society, Jun. 2016, pp. 281–295. [Online].
Available: https://hal.inria.fr/hal-01417123

[15] H. Comon and A. Koutsos, “Formal Computational Unlinkability Proofs of RFID
Protocols,” in Proceedings of the 30th IEEE Computer Security Foundations
Symposium (CSF’17), B. Köpf and S. Chong, Eds. Santa Barbara, California,
USA: IEEE Computer Society Press, Aug. 2017, pp. 100–114. [Online]. Available:
http://ieeexplore.ieee.org/document/8049714/

[16] G. Bana, R. Chadha, and A. K. Eeralla, “Formal Analysis of Vote Privacy Using
Computationally Complete Symbolic Attacker,” in Computer Security - 23rd European
Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II, 2018, pp. 350–372. [Online]. Available:
https://doi.org/10.1007/978-3-319-98989-1_18

58

https://doi.org/10.1007/s10207-013-0192-y
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BC-ccs14.pdf
https://tools.ietf.org/html/rfc4253
https://hal.inria.fr/hal-01417123
http://ieeexplore.ieee.org/document/8049714/
https://doi.org/10.1007/978-3-319-98989-1_18

[17] “ISO/IEC 9798-3:2019, IT Security techniques – Entity authentication – Part
3: Mechanisms using digital signature techniques.” [Online]. Available: https:
//www.iso.org/standard/67115.html

[18] C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams, “Composability of
Bellare-rogaway Key Exchange Protocols,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New York, NY, USA: ACM,
2011, pp. 51–62. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046716

[19] M. Fischlin and F. Günther, “Multi-Stage Key Exchange and the Case of Google’s
QUIC Protocol,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’14. New York, NY, USA: ACM,
2014, pp. 1193–1204, event-place: Scottsdale, Arizona, USA. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660308

[20] R. Küsters and M. Tuengerthal, “Composition Theorems Without Pre-established
Session Identifiers,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. New York, NY, USA: ACM,
2011, pp. 41–50, event-place: Chicago, Illinois, USA. [Online]. Available: http:
//doi.acm.org/10.1145/2046707.2046715

[21] N. Durgin, J. Mitchell, and D. Pavlovic, “A Compositional Logic for Proving Security
Properties of Protocols,” J. Comput. Secur., vol. 11, no. 4, pp. 677–721, Jul. 2003.
[Online]. Available: http://dl.acm.org/citation.cfm?id=959088.959095

[22] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani, “Probabilistic
Polynomial-Time Semantics for a Protocol Security Logic,” in Automata, Languages and
Programming, ser. Lecture Notes in Computer Science, L. Caires, G. F. Italiano, L. Mon-
teiro, C. Palamidessi, and M. Yung, Eds. Springer Berlin Heidelberg, 2005, pp. 16–29.

[23] C. Cremers, “On the Protocol Composition Logic PCL,” in Proceedings of the 2008 ACM
Symposium on Information, Computer and Communications Security, ser. ASIACCS
’08. New York, NY, USA: ACM, 2008, pp. 66–76, event-place: Tokyo, Japan. [Online].
Available: http://doi.acm.org/10.1145/1368310.1368324

[24] S. C. Williams, “Analysis of the SSH Key Exchange Protocol,” in Cryptography and
Coding, ser. Lecture Notes in Computer Science, L. Chen, Ed. Springer Berlin Heidelberg,
2011, pp. 356–374.

[25] D. Cadé and B. Blanchet, “From Computationally-Proved Protocol Specifications to Im-
plementations and Application to SSH,” Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), vol. 4, no. 1, pp. 4–31, Mar. 2013.

[26] B. Blanchet, “CryptoVerif: A Computationally Sound Mechanized Prover for Crypto-
graphic Protocols,” in Dagstuhl seminar "Formal Protocol Verification Applied", Oct.
2007.

[27] V. Cortier and S. Delaune, “A method for proving observational equivalence,” in 2009
22nd IEEE Computer Security Foundations Symposium. IEEE, 2009, pp. 266–276.

59

https://www.iso.org/standard/67115.html
https://www.iso.org/standard/67115.html
http://doi.acm.org/10.1145/2046707.2046716
http://doi.acm.org/10.1145/2660267.2660308
http://doi.acm.org/10.1145/2046707.2046715
http://doi.acm.org/10.1145/2046707.2046715
http://dl.acm.org/citation.cfm?id=959088.959095
http://doi.acm.org/10.1145/1368310.1368324

[28] M. Arapinis, V. Cheval, and S. Delaune, “Verifying Privacy-Type Properties in a Modular
Way,” in 2012 IEEE 25th Computer Security Foundations Symposium, Jun. 2012, pp. 95–
109.

[29] K. G. Paterson, J. C. N. Schuldt, M. Stam, and S. Thomson, “On the Joint Security of
Encryption and Signature, Revisited,” in Advances in Cryptology – ASIACRYPT 2011,
ser. Lecture Notes in Computer Science, D. H. Lee and X. Wang, Eds. Springer Berlin
Heidelberg, 2011, pp. 161–178.

A Messages

Protocols and oracles produce messages depending on names, randomness and some crypto-
graphic primitives. We define here formally a syntax and a semantic for such messages.

A.1 Syntax of messages

We build terms over F a set of function symbols, which will represent the honest function
symbols (encryption symbol, decryption), a set of variables X (unknown terms), and a set of
names N , intended to denote respectively the secret and public names. Names may be sorted,
for instance to capture what is a secret key and what is a randomness.

Example A.1. We define F := {enc/3, dec/2} an encryption scheme, N = {k, r} a secret key,
a key and a randomness. Then, with mess an arbitrary term t1 = enc(mess, k, r) represents
the encryption of an arbitrary message, and dec(t1, k) represents its decryption.

A.2 Semantics of terms

We wish to describe protocols (i.e messages) as terms, whose interpretation must be fixed and
deterministic. This allows us to obtain an interpretation, which is uniform, and we provide
this interpretation with explicit randomness.

Messages will thus be interpreted as deterministic PPT, which takes as inputs:

• ρs, a random tape for secret names (e.g secret keys)

• 1η, the security parameter

Let D be the set of such PPT, called messages.
A cryptographic library Mf is a mapping [[·]]Mf

that interprets the function symbols,
names and closed terms in the set of messages. The indexMf is omitted unless there is some
ambiguity, in order to avoid overloaded notations. [[·]]M is defined as follows:

1. if n ∈ N , n is interpreted as the machine [[n]]M = An that on input (1η, ρs) extracts a
word of length η from the tape ρs. Different names should extract disjoint parts of the
random tape.

2. if f ∈ F , then, with d1, ..., dn ∈ Dn a sequence of messages, [[f]]M(d1, . . . , dn) is the
machine such that, on input (1η, ρs),

[[f]]M(d1, . . . , dn)(1η, ρs) := Af (d1(1η, ρs, ρO), . . . , dn(1η, ρs))

60

Intuitively, we simply compose the machine, which represents f , with all the machines
representing its inputs. f can only be deterministic, any randomness must be explicitly
given as an argument.

Given an assignment σ of variables to messages in D, the random tape ρs, and a security
parameter η ∈ N, for each f ∈ F a Turing machine Af , the (evaluation of the) interpretation
of a term t is inductively defined as follows:

• [[n]]σ,ηρs := An(1η, ρs) if n ∈ N

• [[x]]σ,ηρs = (xσ)(1η, ρs,) if x ∈ X

• [[f(u)]]σ,ηρs = Af ([[u]]σ,ηρs) if f ∈ F

Such an interpretation of terms of course depends on the functional modelMf : we may
addMf as an index of the semantic bracket if needed.

On the contrary, if the parameters are clear from the context we may simply write [[]] for
[[]]σρs , or provide with the relevant arguments only.

Example A.2. Let us consider N = {sk,m, r} and F = {enc}. We may define Aenc as a TM
implementing some encryption function, and Ask as the TM which extracts the η first bits of
ρs, and similarly for m and r with the following bits of ρs. In this cryptographic library, the
term enc(m, r, sk) will now be interpreted as the encryption of a random string by a random
string.

Given Aenc and Ask, we may define the oracle Oenc(ρs, ρO), which on inputs (w, r, s):

• set n(w, r) to 2w × 3r and set e1(n(w, r), η, ρO) to the substring at position [n(w, r) ×
η, (n(w, r) + 1)× eta] from ρO.

• if s <> 1 then fail, else set e2(p(s), η, ρs) to Ask(1η, ρs).

• outputs Aenc(w, e1(n(w, r), η, ρO), e2(p(s), η, ρs)).

In the previous example, we see how the oracle and the functional model will most of the
times be linked. In what follows, we only consider oracles that are consistent with a given
cryptographic library Mf . Such oracles include a mapping NameO from handles s (natural
numbers) to names and the corresponding extraction mechanisms [[NameO(s)]]ρs . They only
use ρs via the machines [[NameO(s)]]ρs . The support of such an oracle is the range of NameO.

B Protocols

B.1 Atomic protocols

We present here a version of the protocol algebra where the atomic protocols are formally
defined using labelled transition systems.

Definition 33 (Atomic protocol). An atomic protocol P is given (as in [11]) by a finite set
of rules

q, x1, . . . , xn
θ−→ q′, s, x1, . . . , xn+1

61

in which q, q′ range over a finite set of states, x1, . . . , xn, xn+1 are variables, s is a term built
on function symbols and the variables x1, . . . , xn+1 and θ is a (first-order) formula whose free
variables are contained in {x1, . . . , xn+1}.

We also assume that P comes with a set of identifiers C(P), which are the channel names
on which P accepts inputs, the sets of its global name Ng(P). P may depend on some names
indexed by a variable i, allowing to instantiate multiple copies of the same protocol. In this
case, we denote the protocol as Pi, and Nl(P) is its set of local names, i.e. names indexed by
i. Then each guard θ includes checking the input channel:

θ |=
∨

c∈C(P)

π1(xn+1) = c

Example B.1. We may consider one agent of a handshake protocol, where the agent wants
to verify possession of a secret key with another party. It can be expressed in the pi-calculus
as:

P := new n.out(enc(n, sk)).in(1,mess) if dec(mess, sk) = n+ 1 then Success

The corresponding transition system for Pi is:

q0, ∅
>−→ q1, enc(ni, sk), x1

q1, x1
dec(π2(x2),sk)=ni+1∧π1(x2)=1−−−−−−−−−−−−−−−−−−−−→ (0, {x1, x2})

q1, x1
dec(π2(x2),sk)6=ni+1∧π1(x2)=1−−−−−−−−−−−−−−−−−−−−→ (⊥, {x1, x2})

P would then be given by the previous LTS, along with C(Pi) = {1}, Ng(Pi) = {sk}, Nl(Pi) =
{ni}.

B.2 Protocol Algebra

The protocols that we consider are constructed from atomic protocols, which are general
labelled transition systems, using parallel and sequential compositions and replications. The
precise syntax of our process algebra is defined in Figure 10.

;i≤n Pi is intended to denote m sequential replications of Pi, the corresponding semantic
is the one of P1; . . . ;Pn.
C(P), Nl(P) and Ng(P) are extended to the protocol algebra in the natural way. To avoid

potential collisions, we include all copies of each name inside them. Given a set of names n,
We denote R(n) the set of all copies of the names.

B.3 Formal definition of a protocol execution

Formally, the channels, local and global names of a protocol are defined inductively as follows:

C(P),Nl(P),Ng(P) ::=
| C(P),Nl(P),Ng(P) if P elementary
| C(P) ∪ C(Q),Nl(P) ∪Nl(Q),Ng(P) ∪Ng(Q) if P = P ;Q

or P = P‖Q
| R(C(P)),R(Nl(P)),Ng(P) if P = P ;i or P =!iP

Given a model (for instance here, a cryptographic library)M, we assume that the atomic
protocols are action deterministic, i.e., for every two distinct transitions q, ~x θ1−→ q′1, s1, ~x, xn+1

62

terms:
t ::= n global names
| ni local names, indexed by a variable
| x variable
| f(t1, . . . , tn) operation of arity n

elementary protocols:
Pel ::= Pa an atomic protocol

| let x = t in Pel variable binding
| in(c, x).Pel input
| out(c,m).Pel output
| if s = t then Pel else Pel conditionals
| 0
| ⊥

protocols:
P, P ′ ::= Pel

| Pel;P sequential composition
| P‖P ′ parallel composition
| ‖i≤nPi parallel replication
| ‖iPi unbounded replication
| ;i≤n Peli sequential replication
| ;i Peli unbounded sequential replication

Figure 10: Protocol algebra

and q, ~x
θ2−→ q′2, s2, ~x, xn+1, M 6|= ∃~x, xn+1.θ1 ∧ θ2. In other words, for any input xn+1, at

most one of the two guards θ1, θ2 is satisfied.
A protocol state is a pair ϕ, (P1, σ1)‖ · · · ‖(Pn, σn), where each Pi is a protocol (or a state

of an atomic protocol), σi is an environment binding variables to bit-strings (intuitively the
attacker’s inputs), ϕ is a sequence of bit-strings (intuitively the protocol outputs). The parallel
operator is considered as associative and commutative.

The semantics of elementary protocols assumes that, after an attacker input, the protocol
moves immediately as much as possible until it stops or waits for another input. Formally,
we define a relation −→ , that does not depend on the attacker, such that, for instance,

φ, (out(c, t).P, σ) −→ φ] (c, [[t]]η,σρs), P, σ. σ] ν is defined such that all previously defined
bindings in σ are overwritten by the ones in ν. In other words, in case of an output, we add to
the frame the interpretation of t, given the current assignment of its variables and a (secret)
random tape. We write !−→ the reduction of a global state to its normal form w.r.t. −→ .

Given an adversary A, a sampling ρs of the names and a sampling ρr the attacker’s random
coins, the transition relation −→

A
is defined as follows for the atomic protocols:

q, ~x
θ−→ q′, s, ~x, xn+1

if σ′ = σ] {xn+1 7→ A(ρr, ϕ, q, σ)}
ϕ, (q, σ) −→

A
ϕ] [[s]]η,σρs , (q

′, σ′)

For composed protocols, the operational semantics is given in Figure 11 and Figure 12 in
the SOS style.

63

Elementary protocols

if [[s]]η,σρs = [[t]]η,σρs
ϕ, (if s = t then P elseQ, σ) −→ ϕ, P, σ

if [[s]]η,σρs 6= [[t]]η,σρs
ϕ, (if s = t then P elseQ, σ) −→ ϕ,Q, σ

ϕ, P, σ] {x 7→ A(ρr, ϕ)} !−→ ϕ′, P ′, σ′

ϕ, in (c, x).P, σ −→
A

ϕ′, P ′, σ′

ϕ, out(c, s).P, σ −→ ϕ] {[[s]]η,σρs }, P, σ

ϕ, let x = t in P, σ −→ ϕ, P, σ] {x 7→ [[t]]η,σρs }

ϕ, P, σ
!−→ ϕ′, P ′, σ′

ϕ, P, σ −→
A

ϕ′, P ′, σ′

Sequential compositions
ϕ, P, σ −→

A
ϕ′, P ′, σ′

ϕ, P ;Q, σ −→
A

ϕ′, P ′;Q, σ′

ϕ,0;Q, σ −→
A

ϕ,Q, σ

Variable bindings are passed
to Q when the prefix execu-
tion succeeds

ϕ,⊥;Q, σ −→
A

ϕ,⊥, σ
Q cannot be executed when
the prefix execution fails

ϕ, ;i≤n Pi, σ −→
A

ϕ, P1; · · · ;Pn, σ

ϕ, ;i Pi, σ −→
A

ϕ, ;i≤A(ρr,ϕ) Pi, σ

Figure 11: Operational semantics of elementary protocols and sequential compositions

64

Protocols

ϕ, (0, σ)‖E −→
A

ϕ,E
Parallel processes are outside
of the scope of local bindings

ϕ, (⊥, σ)‖E −→
A

ϕ,E

ϕ, P, σ −→
A

ϕ′, P ′, σ′

ϕ, (P, σ)‖E −→
A

ϕ′, (P ′, σ′)‖E

The interactions between a
process P and processes run-
ning in parallel are computed
by the attacker

ϕ, P‖Q, σ −→
A

ϕ, (P, σ)‖(Q, σ)

ϕ, ‖i≤nP, σ −→
A

ϕ, P1‖ · · · ‖Pn, σ

ϕ, (‖iP)‖E, σ −→
A

ϕ, (‖i≤A(ρr,ϕ)P)‖E, σ

Figure 12: Operational Semantics of protocols

Note that a protocol with free variables may not be executed alone, but only in a context
where its variables have been defined. Given P a protocol with free variables x1, . . . , xk
and n1, . . . , nk a sequence of names, we may write P (n1, . . . , nk) as a short cut for let x1 =
n1 in . . . let xk = nk in P (x1, . . . , xk).

Definition 34 (Context). A context C[_1, . . . ,_n] is a protocol built over the protocol alge-
bra, where some elementary protocols are replaced with holes. Each hole _i can occur only
once in the context. Given the (elementary) protocols P1, . . . , Pn, C[P1, . . . , Pn] is then the
protocol obtained when replacing each hole by the corresponding protocol.

B.4 Formal definition of protocol oracles

Definition 35 (Protocol Oracle). A protocol oracle is defined as the previous oracles, except
that it has an additional history input, and only use w from its input (w, r, s). The protocol
oracle machines also have an additional history tape, that cannot be accessed by the machine:
it is only passed to the oracle, which also records the input queries on the history tape. We
write AOP (ρs) for a protocol oracle Turing machine whose initial history tape is empty and
such that OP does not use the random tape ρO.

We may generalize in the natural way the definition of protocol oracle machines to support
any number of oracles where each protocol oracle has a distinct additional history tape.

We are now ready, given a protocol P , to define the protocol oracle OP .

Definition 36. Given a protocol P (which is action deterministic), a functional modelMf ,
a security parameter η ∈ N and a random tape ρs, OP is the protocol oracle, which, given ρs
and an history θ = {o1, ..., on} ∈ ({0, 1}∗)n, on a query m:

• recomputes the control state q of the protocol using the history tape

65

• set φ := {x1 7→ o1, . . . , xn 7→ on, xn+1 7→ m}

• selects the (only) transition

q, {x1, .., xn} →Θ (q′, s, {x1, ..., xn, xn+1})

such that eval(Θ, φ, η, ρs) = 1

• outputs eval(s, φ, η, ρs) and appends m to the history tape.

where eval is the usual interpretation in {0, 1}∗.

We extend the definition of PPTOM with:

• A protocol oracle input tape

• A protocol oracle history tape

• A protocol oracle output tape

The machine may call the protocol oracle OP by writing on its input tape some content
m, and there is then a single move to the current configuration to a configuration in which the
history tape has been extended with the content of the input tape, and the protocol oracle
output tape has been set to the output of OP (ρs, θ)(m).

We will often need to consider that we may have several protocol oracles for one PPTOM.
We thus define a way to compose together oracles and protocol oracles. Protocol oracles can
be merged together only if their respective protocols do not share input channels.

Definition 37. For any n and protocols P1, . . . , Pn such that ∀1 ≤ i < j ≤ n.C(Pi)∩C(Pj) = ∅,
we define the oracle < OP1 , . . . ,OPn > (ρs, θ) which on input query:

• check if its input is of the form query := (channel,mess);

• computes i such that channel ∈ C(Pi), and reject if there is no such i;

• computes θi the projection of its history such that θi = {(channel,mess) ∈ θ|channel ∈
C(Pi)};

• return the value of OPi(ρs, θi)(mess).

We will often write AOP1 ,...OPn (ω, ρr) for A<OP1 ,...OPn>(ω, ρr).
We may then use PPTOM with multiple oracles and multiple protocol oracles, written

AO1,...,Ok,OP1 ,...OPn (ω, ρr) for A<O1,...Ok>,<OP1 ,...OPn>(ω, ρr).

C A case study : signed DDH

We apply our framework to the ISO 9798-3 protocol. It was proven UC composable in [13].
With our framework, it could be composed even with an oracle which uses the same long term
secret. We also note that our proof could be mechanized, as it is performed in a first order
logic.

We first provide a short description of the protocol, with possible continuations at the end:

66

!n (
A(ai, skA) :=

out(pk(skA), gai)
in(pkB, B,mess).
if checksign(mess, pkB) ∧B = π2(getmess(mess)) then
if π1(getmess(mess)) = gai ∧ π3(getmess(mess)) = pk(skA) then

out(sign((B, gai , pkB), skA))
let kA = Bai in
_A.

‖
B(bi, skB) :=

in(pkA, A).
out(pk(skB), gbi , sign((A, gbi , pkA), skB))
in(mess).
if checksign(mess, pkA) ∧A = π2(getmess(mess)) then
if π1(getmess(mess)) = gbi ∧ π3(getmess(mess)) = pk(skB) then

let kB = Abi in
_B.

With only one session and if we prioritise the outputs, there are three interleaving, with
corresponding frames φ3, ψ3 and χ3:

67

φ0 := pk(skA), ga

φ1 := φ0, (pk(skB), gb, sign((g0(φ0), gb, g1(φ0)), skB))
φ2 := φ1, if checksign(g4(φ1), g2(φ1)) ∧ g3(φ1) = π2(getmess(g4(φ1))) then

if π1(getmess(g4(φ1))) = ga ∧ π3(getmess(g4(φ1))) = pk(skA) then
sign((g3(φ1), ga, g2(φ1)), skA),_A

φ3 := φ2, if checksign(g5(φ2), g1(φ0) ∧ g0(φ0) = π2(getmess(g5(φ2))) then
if π1(getmess(g5(φ2))) = gb ∧ π3(getmess(g5(φ2))) = pk(skB) then
_B.

ψ0 := φ0

ψ1 := ψ0, if checksign(g2(ψ0), g0(ψ0)) ∧ g1(ψ0) = π2(getmess(g2(ψ0))) then
if π1(getmess(g2(ψ0))) = ga ∧ π3(getmess(g2(ψ0))) = pk(skA) then
sign((g1(ψ0), ga, g0(ψ0)), skA),_A

ψ2 := ψ1, (pk(skB), gb, sign((g3(ψ1), gb, g4(ψ1)), skB))
ψ3 := if checksign(g5(ψ2), g4(ψ1) ∧ g3(ψ1) = π2(getmess(g5(ψ2))) then

if π1(getmess(g5(ψ2))) = gb ∧ π3(getmess(g5(ψ2))) = pk(skB) then
_B.

χ0 := φ0

χ1 := χ0, (pk(skB), gb, sign((g0(χ0), gb, g1(χ0)), skB))
χ2 := if checksign(g2(χ1), g1(χ0) ∧ g0(χ0) = π2(getmess(g2(χ1))) then

if π1(getmess(g2(χ1))) = gb ∧ π3(getmess(g2(χ1))) = pk(skB) then
_B.

χ3 := χ2, if checksign(g5(χ2), g3(χ2)) ∧ g4(χ2) = π2(getmess(g5(χ2))) then
if π1(getmess(g5(χ2))) = ga ∧ π3(getmess(g5(χ2))) = pk(skA) then
sign((g4(χ2), ga, g3(χ2)), skA),_A

C.1 Key exchange security

We show how to apply Corollary 1. We will use idA = skA, idB = skB, lsidA = ga and
lsidB = gb. Then, for any n we set s = a1, b1, . . . , an, bn. We define the functions:

TA(m, s) := ∃ai ∈ s,∃A,A′m = (A, gai , A′)
TB(m, s) := ∃bi ∈ s,∃A,A′m = (A, gbi , A′)

F (m, s, sk) := m

We then set OKE = Osign
TA,F,skA,s

,Osign
TB ,F,skB ,s

,Os, where Os simply reveals the exponents of the
elements in s.

We fix KE(skA, skB, ai, bi)[_A,_B] = A(ai, skA)[_A]‖B(bi, skB)[_B].
We remark that proving at the end of the protocol that (kA, g

a, olsid, oid) is indistinguish-
able to (k, ga, olsid, oid) is equivalent to proving that kA is indistinguishable from k, as the
other elements are public information.

To apply the Corollary, it remains to prove that:

1. ∀1 ≤ i ≤ N, (νai, idA, bi, idB.KE(skA, skBB, ai, bi)[out(kA, g
ai , olsid, oid), out(kB, g

bi , olsid, oid)]
is OKE simulatable)).

68

2. Ax is OKE sound.

3.

Ax |= φ3[g3(φ1)a, g0(φ0)b] ∼
φ3[if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then

out(k)
else if ¬

∨
i g3(φ1) = gbi ∧ g2(φ1) = pk(skB) then

bad
else out(g3(φ1)a)
,
if g0(φ0) = ga ∧ g1(φ0) = pk(skA) then
out(k)

else if ¬
∨
i g0(φ0) = gai ∧ g1(φ0) = pk(skA) then

bad
else out(g0(φ0)b)]

4.

Ax |= ψ3[g1(ψ0)a, g3(ψ1)b] ∼
ψ3[if g1(ψ0) = gb ∧ g0(ψ0) = pk(skB) then

out(k)
else if ¬

∨
i g1(ψ0) = gbi ∧ g0(ψ0) = pk(skB) then

bad
else out(g1(ψ0)a)
,
if g3(ψ1) = ga ∧ g4(ψ1) = pk(skA) then
out(k)

else if ¬
∨
i g3(ψ1) = gai ∧ g4(ψ1) = pk(skA) then

bad
else out(g3(ψ1)b)]

5.

Ax |= χ3[g4(χ2)a, g0(χ0)b] ∼
χ3[if g4(χ2) = gb ∧ g3(χ2) = pk(skB) then

out(k)
else if ¬

∨
i g4(χ2) = gbi ∧ g3(χ2) = pk(skB) then

bad
else out(g4(χ2)a)
,
if g0(χ0) = ga ∧ g1(χ0) = pk(skA) then
out(k)

else if ¬
∨
i g0(χ0) = gai ∧ g1(χ0) = pk(skA) then

bad
else out(g0(χ0)b)]

We have that Ax = EUF-CMATA,F,skA,s ∧EUF-CMATB ,F,skB ,s ∧DDHs,skA,skB is OKE-
sound thanks to Proposition 27.

The simulatability also instantly follows from the definitions, as the attackers as access to
the ai and bi, and can produce signatures on them (but only on them).

We only provide the proof for the most difficult frame φ3, where the attacker has the most
knowledge for each computation. ψ3 and χ3 can be handled exactly the same way, except that
on applications of the EUF-CMA axioms, the attacker does not have the honest signatures
in the frame (as the order of the agents has been mixed up), which simplify the proof.

69

C.2 Proof for φ3

We from now on omit Ax.

C.2.1 Real or random of the key

The real or random goal is:
φ3[if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then

g3(φ1)a

else
g3(φ1)a

,
if g0(φ0) = ga ∧ g1(φ0) = pk(skA) then
g0(φ0)b

else
g0(φ0)b

]

∼

φ3[if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
k

else
g3(φ1)a

,
if g0(φ0) = ga ∧ g1(φ0) = pk(skA) then
k

else
g0(φ0)b

]
There are by case disjunctions four possible cases, the first one being:

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) = ga ∧ g1(φ0) = pk(skA) then
φ3[g3(φ1)a, g0(φ0)b]

∼
if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) = ga ∧ g1(φ0) = pk(skA) then
φ3[k, k]

We can define the substitution τ := {g3(φ1)← gb, g2(φ1),← pk(skB), g0(φ0)← ga, g1(φ0)←
pk(skA)}, the goal then becomes: φ3[gab, gab]τ ∼ φ3[k, k]τ .

Note that a, b is not included in s, skA, skB, we can thus use the DDH axiom on them.
Looking at φ3τ , we also see that all occurences of a and b are of the form ga or gb. Thus
applying DDH directly gives us:

φ3[gab, gab]τ ∼ φ3[gc, gc]τ

We conclude by renaming of gc into k.
The second case is:

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
φ3[g3(φ1)a, g0(φ0)b]

∼
if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
φ3[k, g0(φ0)b]

Here, we actually prove that we never go into the branch which reveals either the g3(φ1)a

or the k, thus yielding the equivalence.
We thus prove that:

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
checksign(g4(φ1), g2(φ1))
∧g3(φ1) = π2(getmess(g4(φ1)))
∧π1(getmess(g4(φ1))) = ga

∧π3(getmess(g4(φ1))) = pk(skA)

∼
if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
false

70

We have by application of the equalities:

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
checksign(g4(φ1), g2(φ1))
∧g3(φ1) = π2(getmess(g4(φ1)))
∧π1(getmess(g4(φ1))) = ga

∧π3(getmess(g4(φ1))) = pk(skA)

∼

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
checksign(g4(φ1), pk(skB))
∧gb = π2(getmess(g4(φ1)))
∧π1(getmess(g4(φ1))) = ga

∧π3(getmess(g4(φ1))) = pk(skA)

We now apply EUF-CMATB ,F,skB ,s to g4(φ1), so we either have g4(φ1) = sign((g0(φ0), gb, g1(φ0)), skB)
(the honest signature), which is a contradiction with g0(φ0) 6= ga and π1(getmess(g4(φ1))) =
ga, or the signature comes from the oracle and g4(φ1) = (A, gbi , A′), in contradiction with
gb = π2(getmess(g4(φ1))).

We thus have:

if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
checksign(g4(φ1), pk(skB))
∧gb = π2(getmess(g4(φ1)))
∧π1(getmess(g4(φ1))) = ga

∧π3(getmess(g4(φ1))) = pk(skA)

∼
if g3(φ1) = gb ∧ g2(φ1) = pk(skB) then
if g0(φ0) 6= ga ∨ g1(φ0) 6= pk(skA) then
false

And we conclude by transitivity.
Of the two remaining cases, one is symmetrical to the previous one, and the last one is

trivial.

C.2.2 Authentication

The goal is:
φ3[if g3(φ1) 6= gb then

if ¬
∨
i g3(φ1) = gbi ∧ g2(φ1) = pk(skB) then

g3(φ1)a

,
if g0(φ0) 6= ga then
if ¬

∨
i g0(φ0) = gai ∧ g1(φ0) = pk(skA) then

g0(φ0)b

]

∼

φ3[if ¬g3(φ1) = gb then
if ¬

∨
i g3(φ1) = gbi ∧ g2(φ1) = pk(skB) then

bad
,
if g0(φ0) 6= ga then
if ¬

∨
i g0(φ0) = gai ∧ g1(φ0) = pk(skA) then

bad
]

We prove that each condition is never true using the EUF-CMA axioms. The four cases
are symmetrical, we only prove the first one:

if checksign(g4(φ1), g2(φ1)) ∧ g3(φ1) = π2(getmess(g4(φ1))) then
if π1(getmess(g4(φ1))) = ga∧
π3(getmess(g4(φ1))) = pk(skA) then
if g3(φ1) 6= gb then
¬
∨
i g3(φ1) = gbi ∧ g2(φ1) = pk(skB)

∼
if checksign(g4(φ1), g2(φ1)) ∧ g3(φ1) = π2(getmess(g4(φ1))) then
if π1(getmess(g4(φ1))) = ga∧
π3(getmess(g4(φ1))) = pk(skA) then
if g3(φ1) 6= gb then
false

71

By case disjunction g2(φ1) = pk(skB), the negative one being trivial, we must prove:

if checksign(g4(φ1), pk(skB)) ∧ g3(φ1) = π2(getmess(g4(φ1))) then
if π1(getmess(g4(φ1))) = ga∧
π3(getmess(g4(φ1))) = pk(skA) then
if g3(φ1) 6= gb then
¬
∨
i g3(φ1) = gbi

∼
if checksign(g4(φ1), pk(skB)) ∧ g3(φ1) = π2(getmess(g4(φ1))) then
if π1(getmess(g4(φ1))) = ga∧
π3(getmess(g4(φ1))) = pk(skA) then
if g3(φ1) 6= gb then
false

We now apply EUF-CMATB ,F,skB ,s to g4(φ1), so we either have g4(φ1) = sign((g0(φ0), gb, g1(φ0)), skB)
(the honest signature), which is a contradiction with g3(φ1) 6= gb and g3(φ1) = π2(getmess(g4(φ1))),
or the signature comes from the oracle and g4(φ1) = (A, gbi , A′), in contradiction with
¬
∨
i g3(φ1) = gbi . This conclude the proof.

C.3 Conclusion for Signed DDH

We thus have the security of the signed DDH protocol. If we want to use Corollary 2 to
compose it with for instance a record protocol R := RA(k)‖RB(k), which simply exchange
encrypted messages using the exchanged key, and do not share any long term secret, it is
trivial. Indeed, without any shared secret, in(k);RA(k)‖in(k);RB(k) is simulatable without
any oracle, so we can take Op = ∅. This means that we have the first set of hypothesis.

Now, R would be proven secure with IND-CCA, and this can be proven easily, even if
many other session of R with distinct keys are in parallel. So we can simply set Or as the
oracle which outputs all the ki,j and Ok as the oracle which output p, and obtain the multi
session security of R, and the simulatability of the key exchange.

R could be a single round trip enrypted exchange, or actually any number of round trip,
easily proved secure using Proposition 18.

D An application to SSH

D.1 Presentation of SSH

We only show here how the proof of security of SSH could be split up into smaller proofs
thanks to our framework, but we do not actually prove the smaller proofs. We will thus only
provide a high level point of view of SSH, not going into too many implementations details,
but rather focusing on the parts that represent a challenge for composition. SSH is a simple
key exchange which can be used to set up an authenticated and secret channel between a
user’s computer and a server, with first an authentication of the server, and then an optional
authentication of the user, either through a password or a secret key. We provide in Figure 13
the basic SSH key exchange, with authentication through secret keys.

We can see that the indistinguishability of the key is not preserved through the protocol.
The difficulty of SSH is moreover that once a user has established a secure connection to a
server, he can from this server establish a secure connection to another server, while using the

72

P (skP, pk(skS))[_] :=
new a;
out(ga);
in(< B, pk(skS), sign >)
let k = Ba in
let sid = hash(< ga, B, k >) in
if checksign(sign, pk(skS))
∧ getmess(sign) = sid then
out(enc(sign(sid, skP), k))
[_].

S(skS, pk(skP))[_] :=
in(A);
new b;
let k = Ab in
let sid = hash(< A, gb, k >) in
out(< gb, pk(skS), sign(sid, skS) >)
in(enc(sign, k))
if checksign(sign, pk(skP))
∧ getmess(sign) = sid then
[_].

SSH :=!P (skP, pk(skS))[0]‖!S(skS, pk(skP))[0]

Figure 13: Basic SSH key exchange

secure channel previously established to obtain the user credentials. We provide in Figure 14 a
model of the SSH with forwarding of agent (reusing the definitions of P and S from Figure 13),
where after a P is ran successufully, a ForwardAgent is started on the computer which can
receive on the secret channel a signing request and perform the signature of it. In parallel,
after the completion of some S, a distant session of P can be initiated by PDistant, which
will request on the previous secret channel the signature of the sid. Finally, as the forwarding
can be chained multiple time, at the end of a successful PDistant, a ForwardServer is set
up, which will accept to receive a signing request on the new secret channel of PDistant,
forward the request on the old secret channel, get the signature and forward it.

With the agent forwarding, we are faced with the new problem which is that we sequentially
compose a basic SSH exchange with other ones which use the same long term secret keys.

To summarize, to be able to prove the security of SSH with agent forwarding, we must be
able to handle key confirmations and composition with shared long term secret.

D.2 The security of the protocol without forwarding agent

We show how we may apply Corollary 3 to the basic SSH protocol.
We provide in Figure 15, how we decompose the ssh protocols in order to prove its security.

To simplify, we directly specify that P and S may only relate to each other by hard-coding
the expected public keys inside them.

A first step is to obtain the hypothesis A-3, relating to the security of the basic SSH key
exchange. We split this goal into two subgoals with a case study, the first one capturing the
real or random of the key,

P 0(a, skP, pk(skS)); out(k)‖S0(b, skS, pk(skP)); out(k) ∼=O
P 0(a, skP, pk(skS)); [if B = gb then out(k′) else out(k)]
‖S0(b, skS, pk(skP))[if A = ga then out(k′) else out(k)]

73

PDistant(oldk, pk(skS)) :=
new a;
out(ga);
in(B, pk(skS), sign)
let k = Ba in
let sid = hash(< ga, B, kP >) in
if checksign(sign, pk(skS))
∧ getmess(sign) = sid then
out(enc(sid, oldk))
in(enc(sign, oldk))
out(enc(sign, k))
0.

ForwardAgent(skP, k) :=
in(enc(sid, k))
out(enc(sign(< sid, “forwarded” >, skP), k))

SForward(skS, pk(skP)) :=
in(A);
new b;
let k = Ab in
let sid = hash(< A, gb, k >) in
out(< gb, pk(skS), sign(sid, skS) >)
in(enc(sign, k))
if checksign(sign, pk(skP))
∧ getmess(sign) =< sid, “forwarded” > then
0.

SSHForward :=
P (skP, pk(skS));ForwardAgent(skP, k)
‖SForward(skS, pk(skP))
‖S(skS, pk(skP));PDistant(k, pk(skS))

Figure 14: SSH key exchange with agent forwarding

P 0(a, skP, pk(skS)) :=
out(ga);
in(< B >)
let k = Ba in
0.

P 1(a, skP, pk(skS), B, k) :=
in(< pk(skS), sign >)

let sid = hash(< ga, B, k >) in
if checksign(sign, pk(skS))
∧ getmess(sign) = sid then
out(enc(sign(sid, skP), k))
0.

S0(b, skS, pk(skP)) :=
in(A);
let k = Ab in
let sid = hash(< A, gb, k >) in
out(gb)

S1(b, skS, pk(skP), sid, k) :=
out(< pk(skS), gb, sign(sid, skS) >)
in(enc(sign, k))
if checksign(sign, pk(skP))
∧ getmess(sign) = sid then

0..

Figure 15: Divided SSH key exchange

74

and the second one the authentication:
P 0(a, skP, pk(skS)); if ¬(

∨
iB = gbi) then P 1(a, skP, pk(skS), B, k); out(k)

‖S0(b, skS, pk(skP)); if ¬(
∨
iA = gai) then S1(b, skS, pk(skP), sid, k); out(k)

∼=O
P 0(a, skP, pk(skS)); if ¬(

∨
iB = gbi) then P 1(a, skP, pk(skS), B, k); bad

‖S0(b, skS, pk(skP)); if ¬(
∨
iA = gai) then S1(b, skS, pk(skP), sid, k); bad

D.3 Proof of real of random

We start by proving that:

Ax |= P 0(a, skP, pk(skS)); out(k)‖S0(b, skS, pk(skP)); out(k) ∼
P 0(a, skP, pk(skS)); [if B = gb then out(k′) else if B = gbi then out(k)]
‖S0(b, skS, pk(skP))[if A = ga then out(k′) else if A = gai then out(k)]

For this proof, we may use Ax = DDHs, where s does not contain a and b.
We denote φji the i-eme term of the j-eme folding in the left game, and ψji for the right

game. After splitting over each possible folding of actions, we have the sequence of terms:

• φ0 = ga; φ1 = φ0, g
b, g0(φ0)b; φ2 = φ1, g1(φ1)a

• φ1
1 = φ0, g0(φ0)a, ; φ1

2 = φ1
1, g

b, g1(φ1
1)b

• ψ0 = φ0; ψ1 = ψ0, g
b, if g0(φ0) = ga then k′ else if g0(φ0) = gai then g0(φ0)b; ψ2 =

ψ1, if g1(ψ1) = gb then k′ else if g1(ψ1) = gbi then g1(ψ1)a

• ψ1
1 = ψ0, if g0(φ0) = gb then k′ else if g0(φ0) = gbi then g0(ψ0)a; ψ1

2 = ψ1
1, g

b, if g1(ψ1
1) =

ga then k′ else if g1(ψ1
1) = gai then g1(ψ1

1)b

And we have to prove that Ax |= φ2 ∼ ψ2 and Ax |= φ1
2 ∼ ψ1

2.

D.3.1 Proof of Ax |= φ2 ∼ ψ2

We apply the EQ that are true in the if branches, and we perform a case study on the first
conditional of the sequence, yielding the four terms:

• ψ′1 = ψ0, g
b,EQ(g0(φ0), ga), k′

• ψ′′1 = ψ0, g
b,EQ(g0(φ0)), gai), gaib

• φ′1 = φ0, g
b,EQ(g0(φ0), ga), gab

• φ′′1 = φ0, g
b,EQ(g0(φ0), gai), gaib

With DDH , we can replace gab with k′, and with transitivity, we have that

Ax |= φ′1 ∼ ψ′1
.

Moreover, we trivially have
Ax |= φ′′1 ∼ ψ′′1

The we also apply the EQand perform another case study on the second conditional,
yielding eight terms:

75

• ψ′2 = ψ′1,EQ(g1(ψ′1), gb), k′

• ψ′′2 = ψ′1,EQ(g1(ψ′1), gbi), gabi

• ψ′′′2 = ψ′′1 ,EQ(g1(ψ′′1), gb), k′

• ψ′′′′2 = ψ′′1 ,EQ(g1(ψ′′1), gbi), gabi

• φ′2 = φ′1,EQ(g1(φ′1), gb), gab

• φ′′2 = φ′1,EQ(g1(φ′1), gbi), gabi

• φ′′′2 = φ′′1,EQ(g1(φ′′1), gb), gab

• φ′′′′2 = φ′′1,EQ(g1(φ′′1), gbi), gabi

From now on, we omit Ax. We then prove the four equivalence required to conclude:

1. φ′2 ∼ ψ′2
We first use function application (FA) multiple times to get φ′2 ∼ ψ′1,EQ(g1(ψ′1), gb), gab.
Then, we use DDH to replace gab with k′ and transitivity to conclude that: φ′2 ∼ ψ′2.

2. φ′′2 ∼ ψ′′2
FA* on φ′1 ∼ ψ′1 yields the conclusion φ′′2 ∼ ψ′1,EQ(g1(ψ′1), gbi), gabi .

3. φ′′′2 ∼ ψ′′′2
FA* on φ′′1 ∼ ψ′′1 , yields φ′′′2 ∼ ψ′′1 ,EQ(g1(ψ′′1), gb), gab. After expressing the fact that
gaib = (gb)ai (i.e. all terms can be expressed as a context of ga, gb, gab), we use DDH to
replace gab with k′ and conclude.

4. φ′′′′2 ∼ ψ′′′′2

FA* on φ′′1 ∼ ψ′′1 yields the conclusion φ′′′′2 ∼ ψ′′1 ,EQ(g1(ψ′′1), gbi), gabi .

We thus have Ax |= φ2 ∼ ψ2.

D.3.2 Proof of Ax |= φ1
2 ∼ ψ1

2

We first note that EQ(g0(φ0), gb) ∼ false as φ0 does not contain b. Thus, the positive branch
can be eliminated and we get ψ1

1 ∼ φ1
1. We then have ψ1

2 ∼ ψ1′
2 where ψ1′

2 = φ1
1, g

b, if g1(φ1
1) =

ga then k′ else g1(φ1
1)b.

We conclude once again with a case study, a DDH for one case, and trivial equality in the
other case.

D.4 Proof for the authentication

We now prove that:

Ax |= P 0(a, skP, pk(skS)); if ¬(
∨
iB = gbi) then P 1(a, skP, pk(skS), B, k); out(k)

‖S0(b, skS, pk(skP)); if ¬(
∨
iA = gai) then S1(b, skS, pk(skP), sid, k); out(k)

∼
P 0(a, skP, pk(skS)); if ¬(

∨
iB = gbi) then P 1(a, skP, pk(skS), B, k); bad

‖S0(b, skS, pk(skP)); if ¬(
∨
iA = gai) then S1(b, skS, pk(skP), sid, k); bad

76

The proof is very similar to the proof of authentication of the signed DH key exchange,
we only outline the arguments here.

TP (m, s) := ∃i,∃X,m = hash(gai , X,Xai)
TS(m, s) := ∃i,∃X,m = hash(X, gbi , Xbi)

F (m, s, sk) := m

We have thatAx = EUF-CMATP ,F,skP,s∧EUF-CMATS ,F,skS,s isO
sign
TP ,F,skA,s

,Osign
TS ,F,skB ,s

,Oai,bi
sound thanks to Proposition 27.

We prove that bad may never occur, either in P or S. For bad to occur, the signature
checks must succeed in one of the process, while the session identifier is not an honest one.
In this case, we prove that the signature checks will always fail, i.e that , for sign, B and A
terms produced by the attacker:

¬(
∨
i

B = gbi)∧ checksign(sign, pk(skS)))∧ getmess(sign) = hash(< ga, B,Ba >) ∼ false

or

¬(
∨
i

A = gai) ∧ checksign(sign, pk(skP)) ∧ getmess(sign) = hash(< A, gb, Ab >) ∼ false

If those two equivalences are true for all possible values of the term sign that can be taken
depending on the traces, bad will never be raised. Let us for instance prove the first one. For
all possible traces, the only honest signature by skS that might appear inside the message
sign is of the form sign(hash(< A, gb, Ab >), skS).

By using the EUF-CMATS ,F,skS,s axiom, we obtain

¬(
∨
iB = gbi) ∧ checksign(sign, pk(skS))) ∧ getmess(sign) = hash(< ga, B,Ba >)

∼
¬(
∨
iB = gbi) ∧ (Ts(getmess(sign)) ∨ getmess(sign) = hash(< A, gb, Ab >), skS)

∧ getmess(sign) = hash(< ga, B,Ba >)

(Ts(getmess(sign)) is directly in contradiction with ¬(
∨
iB = gbi), and the same goes

for getmess(sign) = hash(< A, gb, Ab >), skS), we do obtain the expected conclusion.

E SSH with forwarding agent

E.1 Scheme of the proof

Here, we wish to compose SSH with another potential session of SSH using the forwarding
agent. Then, a protocol which is secure if executed with a real or random key should be secure
when using the key given by the SSH session using the forward agent.

We will write FA for ForwardAgent, SF for SForward, and PD for PDistant. We
consider a record protocol, satisfying a property of the form Y (k)‖Z(k) ∼= Y ′(k)‖Z ′(k).

We also assume that the agents are only willing to communicate with the honnest identity,
i.e pk(skS) and pk(skP) are predefined inside the processes. This is usually the case for SSH,
where the user is asked to either validate or insert himself some public key.

77

Our goal is then:

!n2

P (skP, pk(skS));FA(skP, k);
‖S(skS, pk(skP));PD(k, pk(skS));Y (kPD)
‖SF (skS, pk(skP));Z(kSF)

∼=!n2

P (skP, pk(skS));FA(skP, k);
‖S(skS, pk(skP));PD(k, pk(skS));Y ′(kPD)
‖SF (skS, pk(skP));Z ′(kSF)

We split the proof using two applications of Corollary 3.
The P and S will use randomness of the form ai, bi, and PD and SF randomness of the

form a′i and b
′
i.

E.1.1 First application of Corollary 3

The application is performed with the following hypothesis, which allows to derive the desired
conclusion.

A-3:

P 0(a, skP); if ¬T (B, s) then
P 1(a, skP,Ba); out(Ba)

else out(Ba, ga, B)
‖S0(b, skS); if ¬T (A, s) then

S1(b, skS,Ab); out(Ab)
else out(Ab, gb, A)

∼=OPS ,Oforward

P 0(a, skP); if B = gb then
out(k, ga, B)

else if ¬T (B, s) then
P 1(a, skP,Ba); bad

else out(Ab, gb, A)
‖S0(b, skS); if A = ga then

out(k, gb, A)
else if ¬T (B, s) then
S1(b, skS,Ab); bad

else out(Ab, gb, A)

B-1:

!n2P 1(k);FA(k)‖S1(k);PD(k);Y ‖SF ;Z ∼=OKE1
!n2P 1(k);FA(k)‖S1(k);PD(k);Y ′‖SF ;Z ′

With the oracles:

• OPS allows to simulate (A-1) the other honnest sessions of P and S, it corresponds to
Osign
TP ,F,skS,s

,Osign
TS ,F,skP,s

,Oai,bi of Appendix D.4.

• Oforward allows to simulate (C-1) the continuation, i.e the protocols of the form
in(k);P 1(k);FA(k)‖in(k);S1(k);PD(k);Y ‖SF ;Z

• OKE1 allows to simulate (C-2) !n2P‖S (it is similar to OPS).

All simulations are performed under νskS, skP . To define Oforward, we need to settle an
issue. . Indeed, for hypothesis C-1, we need to provide an oracle that can simulates sessions of
the forwarding protocols. However, in order to get the simulatability of in(k).FA(skP, k), one
must give a generic signing oracles to the attacker, which would obviously make the protocol
unsecure. Based on the assumption that the forwarded sessions perform signatures tagged
with “forwarded”, as shown below, we however can provide a signing oracle only for such

78

messages, allowing for the simulatability of the forwarding agent, and of the forwarded client
and server. More specifically, recall the the forwarding agent is of the form:

FA(skP, k) :=
in(enc(sid, k))
out(enc(sign(< sid, “forwarded” >, skP), k))

Then, we may obtain the simulatability with:

Tfor(m, s) := ∃A,m =< m, “forwarded” >

Then, Oforward is simply Osign
Tfor,F,skP,s

,Osign
Tfor,F,skS,s

,Oa′i,b′i
This difficulty actually stems from a well known weakness in the agent forwarding. When

a user logs on a remote server, he set up on the server a socket which allows to ask for any
signature. If another user has privileged access to the server, he may also use the socket,
and obtain a signature for any session. In our model, we assume that only honest sessions of
forwarder P can access an agent, which allows us to prove the security. Providing a proof of
SSH without this modification still represent a challenge regarding composition.

Now, the proof of A-3 is instantly derived from the proof performed in Appendices D.3
and D.4, where we replace for instance EUF-CMATP ,F,skP,s with EUF-CMATP∨T ′P ,F,skP,s.
The proofs will work as previously, based on the remark that T ′P (getmess(sign), s) is incom-
patible for instance with getmess(sign) = hash(< ga, B,Ba >).

The difficulty now lies in proving the security of what we do after the first SSH key
exchange, i.e proving Hypothesis B-1. This is where we apply once again Corollary 3.

E.1.2 Second application of Corollary 3

We wish to prove that:

!n2P 1(k);FA(k)‖S1(k);PD(k);Y ‖SF ;Z ∼=OKE1
!n2P 1(k);FA(k)‖S1(k);PD(k);Y ′‖SF ;Z ′

We use as hypothesis:

79

A-3:

P 1(k);FA(k)‖S1(k);PD0(a, skP); if ¬T (B, s) then
PD1(a, skP,Ba); out(Ba)

else out(Ba, ga, B)
‖SF 0(b, skS); if ¬T (A, s) then

SF 1(b, skS,Ab); out(Ab)
else out(Ab, gb, A)

∼=OKE1
,OkFPS ,OY Z

P 1(k);FA(k)‖S1(k);PD0(a, skP); if B = gb then
out(k, ga, B)

else if ¬T (B, s) then
PD1(a, skP,Ba); bad

else out(Ab, gb, A)
‖SF 0(b, skS); if A = ga then

out(k, gb, A)
else if ¬T (B, s) then
SF 1(b, skS,Ab); bad

else out(Ab, gb, A)

Note that the k used here is a fresh name, which could be considered as a long term secret,
i.e inside p. We may prove this without considering P 1 and S1, and replacing them by oracles
which can simulate them. The proof of A-3 can once again be derived from the proof performed
in Appendices D.3 and D.4. Note that here, the proof is greatly simplified because our modified
forwarding agent ensure that any signed session identifier is honest, and the secrecy of the
name k is not even required to perform the proof. This proof could also performed without
the additional check added to the forwarding agent, but it would then require a cryptographic
assumption regarding the encryption.

And B-1:

PD1(k′);Y (k′)‖SF 1(k′);Z(k′) ∼=OKE1
,O
KEk2

PD1(k′);Y ′(k′)‖SF 1(k′);Z ′(k′)

With the oracles:

• OkFPS allows to simulate (A-1) the other honnest sessions of PD and SF , it corresponds
to Osign

T ′P ,F,skS,s
,Osign

T ′S ,F,skP,s
,Oai,bi of Appendix D.4.

• OY Z allows to simulate (C-1) the continuation, i.e the protocols of the form
in(k);PD1(k);Y (k)‖in(k);SF 1(k);Z(k)

• OKEk2 allows to simulate (C-2) !n2FA(k)‖PD(k)‖SF (it is similar to OFPS).

Here, we do not commit to any transport protocol used after the SSH key exchange. It
would probably use some encryption using the fresh key. Then, if for instance IND-CCAis
required to prove Y ‖Z ∼= Y ′‖Z ′, to prove B − 1, we would need to assume that IND-CCAis
still valid even when the attacker has access to the hash of a message containing the key used
for encryption. This holds for instance in the random oracle model. A proof of B − 1 could
then be derived from the proof of Y ‖Z ∼= Y ′‖Z ′ which would still be valid under an oracle
producing hashes of the key, i.e an oracle which could simulate PD1 and SF 1.

80

F Proofs

F.1 Formal Corollary for Key Exchange

We denote p = {idI , idR} and s = {lsidIi , lsidRi }i∈N the set of all the copies of the local session
identifiers.

Formalizing the previous Section, to prove the security of a key exchange, we can use the
following Corollary of Theorem 5.

Corollary 1. Let Oke, O be oracles and KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2

a key exchange protocol, such that I binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is

disjoint of the oracle support. Let idI , idR be names and sI = {lsidIi }i∈N,sR = {lsidRi }i∈N sets
of names :

1. ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.

KEi[out(〈xI , lsidIi , xIlsid, xIid〉), out(〈xR, lsidRi , xRlsid, xRid〉)]‖out(〈lsidRi , lsidIi 〉)

is Oke simulatable)).

2. s is disjoint of the support of O.

3.

KE0[out(〈xI , lsidI0, xIlsid, xIid〉), out(〈xR, lsidR0 , xRlsid, xRid)] ∼=Oke,O
KE0[if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xlsid, xid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI0 ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

Then, for any N which depends on the security parameter:

‖i≤NKEi[out(xI), out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Then, building upon the previous Corollary and the sequential composition Theorems, the
following Corollary shows the precise requirements to prove the security of a protocol which
uses a key exchange, for an bounded number of session and with long term secrets shared
between the key exchange and the protocol.

81

Corollary 2. Let OT , Oke, Or,OP,Q be oracles and
KEi[_1,_2] := I(lsidIi , id

I);_1‖R(lsidRi , id
R);_2 a key exchange protocol, such that I

binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is disjoint of the oracle support. Let

idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.
Let p = {idI , idR}, P (x, y) = P1(x, y)‖P2(x, y) and Q(x, y, z) = Q1(x, y, z)‖Q1(x, y, z) be

parameterized protocols, such that Nl(P,Q) is disjoint of the oracle support.

I-1 ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.KEi[out(xI), out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -simulatable)).

I-2 s is disjoint of the support of OP,Q.

I-3

KE0[out(〈xI , lsidI0, xIlsid, xIid〉), out(〈xR, lsidR0 , xRlsid, xRid〉) ∼=OT ,OP,Q
KE0 [if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xIlsid, xIid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

and

R-1 ∀ 1 ≤ i, j ≤ n, νp, ki,j .P0(p, ki,j) is Or-simulatable.

R-2 ∀ 1 ≤ i ≤ n, νp, ki,j .Q0(p, ki,j) is Or-simulatable.

R-3 s is disjoint of the support of Ok.

R-4 P0(p, k) ∼=Or,Oke Q0(p, k)

and

C-1 νp.in(xIi).P
I
i (xIi)‖in(xRi).PRi (xRi)is OP,Q-simulatable.

1. νp.

‖i≤n KEi[if (xIid = idR) then
if

1≤j≤n
(xIlsid = lsidRj ∧ xIid = idR) then

out(〈i, j〉)
else P Ii (xIi),

if (xRid = idI) then
if

1≤j≤n
(xRlsid = lsidIj ∧ xRid = idI) then

out(〈i, j〈)
else PRi (xRi)]

is Oke-simulatable.

Then, for any n which may depend on the security parameter:

‖i≤nKEi[P Ii (xIi), P
R
i (xRi)] ∼=

‖i≤nKEi[if xIid = idR then QIi (x
I
i) else P Ii (xIi), if x

R
id = idI then QRi (xRi) else PRi (xRi)]

82

F.2 Formal Corollary for Key Confirmations

The Theorem for those key exchanges is very similar to Corollary 2. The main difference is
that now, instead of working on a key exchange KE := I(lsidI , idI)|R(lsidR, idR)[, we further
split I and R, in I = I0; I1 and R := R0;R1, where I0 and R0 will corresponds to the key
exchange up to but not including the first use of the secret key, and I1 and R1 as the remainder
of the protocol.

Corollary 3. Let OKE, Or,OP,Q be oracles and

KEi[_1,_2] := Ii(lsid
I
i , id

I);_1|Ri(lsid
Ri, idR);_2

a key exchange protocol with Ii(lsid
I
i , id

I) := I0
i (lsidIi , id

I); I1
i (xI) and Ri(lsid

R
i , id

R) :=
R0
i (lsid

R
i , id

R);R1
i (x

R) such that I0 binds xI , xid, xlsid, R0 binds xR, xid, xlsid and Nl(KE) is
disjoint of the oracles support. Let p = {idI , idR}, Pi(x, y) = P Ii (x, y)‖PRi (x, y),Q(x, y, z) =
QIi (x, y, z)‖QRi (x, y, z), Ci(z) and Di(z) be protocols, such that Nl(P,Q,C,D) is disjoint of
the oracles support.

Let idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

A-1 ∀i ∈ N, (νlsidIi , idI , lsidRi , idR.Ci(p)‖I0
i (lsidIi , id

I); out(xI)‖R0
i (lsid

R
i , id

R); out(xR) is OKE
simulatable)).

A-2 s is disjoint of the support of Op.

A-3

Ci(p)‖I0
0 (lsidI0, id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1(xI); out(xI)

else out(〈xI , lsidI0, xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1(xR); out(xR)

else out(〈xR, lsidR, xRlsid, xRid〉)∼=OKE ,Op
Ci(p)‖I0(lsidI0, id

I); if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI0, xIlsid, xIid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
I1(xR);⊥

else out(〈xI , lsidI , xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
I1(xR);⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)

and for any N which may depend on the security parameter:

B-1 ‖i≤N2
Di(p)‖I1

i (ki);P
I
i (p, ki)‖B1

i (ki);P
R
i (p, ki) ∼=Or,Ok ‖i≤n

2
Di(p)‖I1

i (ki);Q
I
i (p, ki)‖B1

i (ki);Q
R
i (p, ki)

and

C-1 νp, lsidIi , lsid
R
i .Di(p)‖in(x).Pi(x) ‖in(x).Qi(x)‖in(x).I1

i (x);P Ii (x)‖in(x).R1
i (x);PRi (x)

‖in(x).I1
i (x);QIi (x)‖in(x).R1

i (x);QRi (x) is Op simulatable.

83

C-2 νp.

‖i≤N Ci(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(〈i, j〉)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(〈i, j〉)
else if (xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

is Ok simulatable.

Then, for any n:

‖i≤NCi(p)‖Di(p)‖KEi[P Ii (xI), PRi (xR)] ∼=

‖i≤NCi(p)‖Di(p)‖KEi[if xIid = idR then QIi (x
I) else P Ii (xI), if xRid = idI then QRi (xR) else PRi (xR)]

F.3 Oracle Simulation

We first show that O-simulation, whose definition implies the identical distributions of two
messages produced either by the simulator of by the oracle, implies the equality of distributions
of message sequences produced by either the oracle or the simulator.

Lemma 9. Given a cryptographic libraryMf , a sequence of names n, an oracle O with support
n and a protocol P , that is O-simulatable with AO, we have, for every x, y, c, r2, rB ∈ {0, 1}?,
every v ∈ Dη

n, for every m ≥ 1, for every PTOM BO (using tags prefixed by 1):

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

where we split ρO into ρAO] ρBO such that O called by B only accesses ρBO and O called by
A only accesses ρAO (which is possible thanks to the distinct prefixes).

Proof. We proceed by induction on m. Let us fix x, y, c, r2, rB ∈ {0, 1}? and v ∈ Dη
n. We

assume that:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

We define vim+1 = BO(ρs,ρO)(Mf , ρr2 , η, φ
i
m).

As the support of O is n, we have that O(ρs, ρO) = O(πk(ρs, η), ρO) .
Using conditional probabilities, we have that:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{v

1
m+1 = xm+1| θ1

m = x, φ2
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

×Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

84

Now, if we define Ov,rB such that Ov,rB = O(πn(ρs, η), ρBO) when [[n]]ηρs = v and ρBO = rB ,
we have that

Pρs,,ρr1 ,ρr2 ,ρO{v
1
m+1 = xm+1| θ1

m = x, φ1
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

=1 Pρs,ρr1 ,ρr2 ,ρO{B
O(πn(ρs,η),ρBO)(Mf , ρr2 , η, φ

1
m) = xm+1

| θ1
m = x, φ1

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=2 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1

| θ1
m = x, φ1

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=3 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1}
=4 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1

| θ2
m = x, φ2

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=5 Pρs,ρr1 ,ρr2 ,ρO{B

O(πn(ρs,η),ρBO)(Mf , ρr2 , η, φ
2
m) = xm+1

| θ2
m = x, φ2

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

Justified with:

1. because O(ρs, ρO) = O(πn(ρs, η), ρBO);

2. O(πn(ρs, η), ρBO) = Ov,rB , and φ1
m = y;

3. the considered event does not depends on any of the conditional events removed;

4. the considered event does not depends on any of the conditional events added;

5. reversing the previous steps.

So we conclude that, as we also have the induction hypothesis:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m+1 = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2} (i)

We now define:
u1
m+1 = AO(πn(ρs,η),ρAO)(Mf , ρr1 , θ

1
m] v1

m+1, η)

u2
m+1 = OP (ρs, θ

2
m] v2

m+1)

We define the Turing machine B, such that:

BO(ρs,ρO)(Mf , ρr2 , η, φ
i
m) :=

if ∀j ≤ m+ 1,BO(v,rB)(Mf , r2, η, φ
i
j) = xj

∧φim = y

then BO(v,rB)(Mf , r2, η, φ
i
m)

else ⊥

We then define v′m and θ′m for B similarly as vm for B.

85

We define Ov,ρAO such that Ov,ρAO = O(πn(ρs, η), ρAO) when [[n]]ηρs = v. We then have:

Pρs,ρr1 ,ρr2 ,ρO{u
1
m+1 = ym+1| θ1

m+1 = x, φ1
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

=1 Pρs,ρr1 ,ρr2 ,ρO{A
O
v,ρAO (Mf , ρr1 , x, η) = ym+1| θ1

m+1 = x, φ1
m = y,

[[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=2 Pρs,ρr1 ,ρr2 ,ρO{A

O
v,ρAO (Mf , ρr1 , θ

1′
m+1, η) = ym+1| θ1

m+1 = x, φ1
m = y,

[[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=3 Pρs,ρr1 ,ρr2 ,ρO{A

O
v,ρAO (Mf , ρr1 , θ

1′
m+1, η) = ym+1| [[n]]ηρs = v}

×(Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=4 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′
m+1) = ym+1| [[n]]ηρs = v}

×(Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y, | [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=5 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′
m+1) = ym+1| [[n]]ηρs = v}

×(Pρs,ρr1 ,ρr2 ,ρO{θ
2
m+1 = x, φ2

m = y, | [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=6 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′
m+1) = ym+1| θ2

m+1 = x, φ2
m = y, [[n]]ηρs = v,

ρBO = rB, ρr2 = r2}
=7 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, x) = ym+1| θ2

m+1 = x, φ2
m = y, [[n]]ηρs = v,

ρBO = rB, ρr2 = r2}
=8 Pρs,ρr1 ,ρr2 ,ρO{u

2
m+1 = ym+1| θ2

m+1 = x, φ2
m = y, [[n]]ηρs = v,

ρBO = rB, ρr2 = r2}

Justified with:

1. using the conditional probabilities;

2. by definition of B which produces x under the conditional events;

3. using conditional probabilities, as θm 6= x ∨ φm 6= y ⇒ B = ⊥;

4. by O simulatability on B;

5. using (i);

6. using conditional probabilities, as θm 6= x ∨ φm 6= y ⇒ B = ⊥;

7. by definition of B which produces x under the conditional events;

8. using the conditional probabilities.

Combining the previous equality with equation (i) finally yields through conditional prob-
abilities:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m+1 = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m+1 = x, φ2

m+1 = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

86

F.4 Autocomposition Results

Proposition 18. Let O be an oracle, two parameterized processes P (x), Q(x), a set of names
n = Ng(P,Q) and fresh names k0, l. We assume that Nl(P,Q) is disjoint of the support of O.
If:

• νn.in(cP , x);P (x)‖in(cQ, x);Q(x) is O-simulatable, and

• P (k0); out(cP , x)‖Q(k0); out(cQ, x) ∼=O P (k0); out(cP , l)‖Q(k0); out(cQ, l)

then, for any N,

P (k0);P (x);N ; out(cP , x)‖Q(k0);Q(x);N ; out(cQ, x)
∼=O P (k0);P (x);N ; out(cP , l)‖Q(k0);Q(x);N ; out(cQ, l)

Proof. We proceed by induction on N . The result is exactly the first hypothesis for N = 0.
Given some N > 1, we assume that

P (ki)
;N−1; out(k)‖Q(ki)

;N−1; out(k) ∼=O P (ki)
;N−1; out(l)|Q(ki)

;N−1; out(l) (i)

In the following, we will write P (ki)
;N−1 for P (ki);P (k);N−2 and we will omit to mention

the α-renaming made over the local names inNl(P,Q) between the different copies of P and Q.
The renaming is however essential so that we may for instance have Nl(PN−1(k))∩Nl(P) = ∅
when we wish to apply Theorem 4. This silent renaming is possible because Nl(P,Q) is not
contained in the support of O.

We obtain by application of Theorem 4 with A = P (ki)
;N−1, B = Q(ki)

;N−1, P1(x) :=
P (x);0; out(k) and P2(x) := Q(x);0; out(k):

P ;N (ki); out(k)‖Q;N (ki); out(k) ∼=O P ;N−1(ki);P (l);0; out(k)‖Q;N−1(ki);Q(l);0; out(k) (I)

Now, with Theorem 2 applied on P (l);0; out(k)‖Q(l);0; out(k) ∼=O P (l);0; out(l′)‖Q(l);0; out(l′)
with l′ a fresh name, with P := P (ki)

;N−1 and Q := Q(ki)
;N−1, we obtain:

P (ki)
;N−1;P (l);0; out(k)‖Q;N−1(ki);Q(l); out(k) ∼=O P (ki)

;N−1;P (l);0; out(l′)‖Q(ki)
;N−1;Q(l);0; out(l′) (II)

We also perform an application of Theorem 4 on (i) with A = P (ki)
;N−1, B = Q(ki)

;N−1,
P1(k) := P (ki)

;0; out(l) and P2(k) := Q(ki)
;0; out(l) :

P (ki)
;N−1;P (l);0; out(l′)|Q(ki)

;N−1;P (l);0; out(l′) ∼=O P (ki)
;N ; out(l)‖Q(ki)

;N ; out(l) (III)

We conclude by transitivity with (I),(II) and (III).

Simulatability is stable by binding names that do not appear in the protocol, which means
that we will be able simulate at the same times two simulatable protocol who do not share
long term secret.

Lemma 38. Given a cryptographic library Mf , a sequence of names n, an oracle O with
support n and a sequence of terms t, if νn.t is O-simulatable , then for any sequence of names
m such that m ∩N (t1, . . . , tn) = ∅, νn ∪m.t is O-simulatable.

87

Proof. Let there be a cryptographic library Mf , a sequence of names n, an oracle O with
support n and a sequence of terms t O-simulatable. As the names of m do not appear in t,
the probability of any event regarding t is independent from an event regarding m so we have
for any PTOM AO, η, sequences c, v, w ∈ {0, 1}∗,

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf ,m1, . . . ,mk, ρr2 , η) = c | [[n]]ηρs = v, [[m]]ηρs = w}

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf ,m1, . . . ,mk, ρr2 , η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{[[t1, . . . , tn]]ηρs,ρr,ρO = c|[[n]]ηρs = v}
= Pρs,ρr,ρO{[[t1, . . . , tn]]ηρs,ρr,ρO = c|[[n]]ηρs = v, [[m]]ηρs = w}

Thus νn ∪m.t is O-simulatable.

Proposition 17. Let Or be an oracle parameterized by a sequence of names s, and O an
oracle. Let p be a sequence of names, P (x), R1

i (x, y), . . . , Rki (x, y) and Q(x) be protocols,
such that Nl(R1

i , . . . , R
k
i) is disjoint of the oracle support. If we have, for sequences of names

lsid
1
, . . . , lsid

k, with s = {lsidji}1≤j≤k,i∈N :

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j
i) is Or-simulatable.

2. P (p) ∼=Or Q(p)

3. s is disjoint of the support of O.

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1
i)‖ . . . ‖i≤NkRki (p, lsid

k
i)

∼=O,Or Q(p)‖i≤N1R1
i (p, lsid

1
i)‖ . . . ‖i≤NkRki (p, lsid

k
i)

Specifically, there exists a polynomial pS (independent of all Rj) such that if pRj is the
polynomial bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i)‖...‖i≤NkRki (p,lsid

k
i)∼=OQ(p)‖i≤N1R1

i (p,lsid
1
i)‖...‖i≤NkRki (p,lsid

k
i)(t)

≤ AdvP (p)∼=O,OrQ(p)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))
Rather than proving the previous Theorem, where we recall that the protocols may depend

on a predicate T (x) whose interpretation depends on s, we prove the version where P directly
depends on s.

Proposition 39. Let Or be an oracle parameterized by a sequence of names s. Let p be
a sequence of names, P (x), R1

i (x, y, z), . . . , R
k
i (x, y, z) and Q(x, y) be protocols, such that

Nl(R1
i , . . . , R

k
i) is disjoint of the oracle support. If we have, for sequences of names lsid1

, . . . , lsid
k,

with s = {lsidji}i,j∈N :

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j
i , s) is Or-simulatable.

2. P (p) ∼=O Q(p, s)

88

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1
i , s)‖ . . . ‖i≤NkRki (p, lsid

k
i , s)

∼=Or Q(p, s)‖i≤N1R1
i (p, lsid

1
i , s)‖ . . . ‖i≤NkRki (p, lsid

k
i , s)

Specifically, there exists polynomial pS (independent of all Rj)such that if pRj is the poly-
nomial bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i ,s)‖...‖i≤NkRki (p,lsid

k
i ,s)
∼=OrQ(p,s)‖i≤N1R1

i (p,lsid
1
i ,s)‖...‖i≤NkRki (p,lsid

k
i ,s)(t)

≤ AdvP (p)∼=OQ(p,s)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))
Proof. We prove the result for k = 1, denoting R1 as R, as the generalization is immediate.
Let there be an integer n.

Hypothesis 1 with Lemma 38 gives us that for 1 ≤ i ≤ N , νlsidi, p.Ri(p, lsidi, s) is OR-
simulatable.

Moreover, with δ = {p, s}, N (Ri(p, lsidi, s)) ∩ δ = {p, lsidi}, so thanks to Theorem 1, for
1 ≤ i ≤ N , νδ.R(p, lsidi, s) is OR-simulatable.

Now, up to renaming of the local names of R (which is possible as they do not appear in
the oracle support), we have that ∀1 ≤ i < j ≤ N.N (Ri(p, lsidi, s)) ∩ N (Rj(p, lsidj , s)) ⊂ δ,
so with Theorem 1 we have that ‖i≤NRi(p, lsidi, s) is OR-simulatable.

Note that if R is simulatable by a simulator bounded by a polynomial pR(t) on an input
of size t, then ‖i ≤ NR(p, lsidi, s) is simulatable by a simulator bounded by a polynomial
q(n, pR(t)), where q is uniform in n and R.

Finally, we have that ‖i≤NRi(p, lsidi, s) is OR-simulatable and P (p, lsidn) ∼=O Q(p, s), so
we conclude with Theorem 2.

Instantiating the bound on the advantage from Theorem 2 with |C| = n|R| and pC(t) =
q(n, pR(t)) yields the desired result.

Theorem 5. Let Or, O be oracles both parameterized by a sequence of names s. Let p be
a sequence of names, Pi(x, y) and Qi(x, y) be parameterized protocols, such that Nl(P,Q) is
disjoint of the oracles support. If we have, for sequences of names lsidP , lsidQ, with s =

{lsidPi , lsid
Q
i }i∈N:

1. ∀ i ≥ 1, νp, lsid
P
i .Pi(p, lsid

P
i) is Or-simulatable.

2. ∀ i ≥ 1, νp, lsid
Q
i .Qi(p, lsid

Q
i) is Or-simulatable.

3. s is disjoint of the support of O.

4. P0(p, lsid
P
0) ∼=Or,O Q0(p, lsid

Q
0)

then,
||iPi(p, lsid

P
i) ∼=O ||iQi(p, lsid

Q
i)

We once again generalize with the explicit dependence in s.

Theorem 7. Let Or, O be oracles both parameterized by a sequence of names s. Let p be
a sequence of names, Pi(x, y) and Qi(x, y, z) be parameterized protocols, such that Nl(P,Q)

is disjoint of the oracles support. If we have, for sequences of names lsidP , lsidQ , with
s = {lsidPi , lsid

Q
i }i∈N :

89

1. ∀ i ≥ 1, νp, lsid
P
i .Pi(p, lsid

P
i) is Or-simulatable.

2. ∀ i ≥ 1, νp, lsid
Q
i .Qi(p, lsid

Q
i , s) is Or-simulatable.

3. s is disjoint of the support of O.

4. P0(p, lsid
P
0) ∼=Or,O Q0(p, lsid

Q
0 , s)

then, ||iPi(p, lsid
P
i) ∼=O ||iQi(p, lsid

Q
i , s)

Proof. By application of Theorem 5, we get that for all n1, n2,

P0(p, lsid
P
0)‖1<i≤N1Pi(p, lsid

P
i)‖1<i≤N2Qi(p, s, lsid

Q
i)

∼=Or,O
Q0(p, s, lsid

Q
0)‖1<i≤N1Pi(p, lsid

P
i)‖1<i≤N2Qi(p, s, lsid

Q
i)

By weakening of the attacker, we get:

P0(p, lsid
P
0)‖1<i≤N1Pi(p, lsid

P
i)‖1<i≤N2Qi(p, s, lsid

Q
i)

∼=O
Q0(p, s, lsid

Q
0)‖1<i≤N1Pi(p, lsid

P
i)‖1<i≤N2Qi(p, s, lsid

Q
i)

Then, for a polynomial p (assumed without loss of generality increasing), any n = p(η),
and all j < n:

P0(p, lsid
P
0)‖1<i≤j−1Pi(p, lsid

P
i)‖1<i≤N−j−1Qi(p, s, lsid

Q
i)

∼=O
Q0(p, s, lsid

Q
0)‖1<i≤j−1Pi(p, lsid

P
i)‖1<i≤N−j−1Qi(p, s, lsid

Q
i)

Through the renaming of the lsid, which is possible as s is disjoint from the oracle support,
we get that:

Pj(p, lsid
P
j)‖P0(p, lsid

P
0) . . . ‖Pj−1(p, lsid

P
j−1)‖Qj+1(p, s, lsid

Q
j+1)‖ . . . Qn(p, s, lsid

Q
n)

∼=O
Qj(p, lsid

Q
j , s)‖P0(p, lsid

P
0) . . . ‖Pj−1(p, lsid

P
j−1)‖Qj+1(p, s, lsid

Q
j+1)‖ . . . Qn(p, s, lsid

Q
n)

Thanks to Theorem 5, there exist polynomial pS such that, if pP and pQ are the polynomial
bound on the runtime of the simulators for P or Q, for all j, we have that the advantage of any
attacker running in time t against the previous indistinguishability, denoted D, is bounded
by:

AdvD
(
pS
(
t, j − 1, |P |, . . . , p(η)− j − 1, |q|, pP (t), . . . , pQ(t)

))
Thus, for all j, the advantage of any attacker against the corresponding game is uniformly
bounded by:

AdvD
(
pS
(
t, p(η), |P |, . . . , p(η), |q|, pP (t), . . . , pQ(t)

))
We then conclude with an hybrid argument.

90

F.5 Key Exchanges

We first prove a proposition which allows to reduce the security of n sessions in parallel to the
security of one session with N − 1 sessions in parallel. It is expressed in a more general way
than required for basic key exchanges, so that we can reuse it for other results.

Proposition 40. Let O be an oracle and KEi[_1,_2] := Ii(lsid
I
i , id

I);_1‖Ri(lsidRi , idR);_2

a key exchange protocol, such that I binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE)

is disjoint of the oracle support. Let idI , idR be names, sI = {lsidIi }i∈N, sR = {lsidRi }i∈N,
s = sI ∪ sR sets of names,

Let T1(x),T2(x), S1(x),S2(x) be parametric processes with completely disjoint names. Let
N be an integer (which may depend on η), and let s = {lsidIi , lsidRi }1≤i≤N and Os an oracle.
If s is disjoint of the support of O and if,

1. νs.out(s) is Os-simulatable.

2.

‖i≤N−1KEi[out(〈xI , lsidI , xIlsid, xIid〉), out(〈xR, lsidR, xRlsid, xRid〉)]
‖KEn[if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidI , xIlsid, x
I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

∼=O,Os

‖i≤N−1KEi[out(〈xI , lsidI , xIlsid, xIid〉), out(〈xR, lsidR, xRlsid, xRid〉)]
‖ KEn[if xIlsid = lsidRn ∧ xIid = idR then

out(〈k, lsidIn, xlsid, xid〉)
if xIlsid /∈ sR ∧ xIid = idR then
T1(xI , lsidIn, xlsid, xid)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid = lsidIn ∧ xRid = idI then
out(〈k, lsidRn , xlsid, xid〉)

if xRlsid /∈ sI ∧ xRid = idI then
T2(xR, lsidRn , xlsid, xid)

else out(xR, lsidR, xRlsid, x
R
id)

91

Then:
‖i≤NKEi[if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidI , xIlsid, x
I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]∼=O
‖i≤N KEi[if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

out(〈ki,j , lsidIi , xlsid, xid〉)
if xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIn, xlsid, xid)
else out(〈xI , lsidI , xIlsid, xIid〉),

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI) then

out(〈kj,i, lsidRi , xlsid, xid〉)
if xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRn , xlsid, xid)
else out(〈xR, lsidR, xRlsid, xRid〉)]

Proof. We fix N and define an ordering (arbitrary) on the couples (i, j)1≤i,j≤N . We then set:

G0
(i,j) :=

‖r≤NKEr[if
(r,t)≥(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)≥(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

if
(t,r)≥(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)≥(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

92

and
G1

(i,j) :=

‖r≤NKEr[if
(r,t)>(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

We note that G1
(i,j) = G0

(i,j)+1, that G
0
(0,0) is the game on the right hand side of the goal,

and that G0
(n,n) is the game on the left hand side of the goal.

Thus, if we have uniformly that G1
(i,j)
∼= G0

(i,j), we can conclude with a classical hybrid
argument.

We remark that G1
(i,j) and G

0
(i,j) only differ in two places, where a conditional is added in

Ii and one in Rj .
Let us fix (i, j), we define the substitution σ := {lsidIn 7→ lsidIi , lsid

R
N 7→ lsidRj , lsid

I
i 7→

lsidIn, lsid
R
j 7→ lsidRn } and denote s′ = sσ. We apply the substitution both to the oracle and

the protocol, and the hypothesis allows us to get, for all N :

93

‖(r,s) 6=(i,j)Ir(lsid
I
r , id

I); out(〈xI , lsidIr , xIlsid, xIid〉)‖Rs(lsidRs , idR); out(〈xR, lsidRs , xRlsid, xRid〉)
‖Ii(lsidIi , idI); if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidIi , x
I
lsid, x

I
id)

else out(〈xI , lsidIi , xIlsid, xIid),
‖Rj(lsidRj , idR)[if xRlsid /∈ sI ∧ xRid = idI then

S2(xR, lsidRj , x
R
lsid, x

R
id)

else out(〈xR, lsidRj , xRlsid, xid〉)
∼=O,Os′
‖(r,s) 6=(i,j)Ir(lsid

I
r , id

I); out(〈xI , lsidIr , xIlsid, xIid〉)‖Rs(lsidRs , idR); out(〈xR, lsidRs , xRlsid, xRid〉)
‖ Ii(lsid

I
i , id

I); if xIlsid = lsidRj ∧ xIid = idR then
out(〈k, lsidIi , xIlsid, xIid)

if xIlsid /∈ sR ∧ xIid = idR then
T1(xI , lsidIr , x

I
lsid, x

I
id)

else out(〈xI , lsidIi , xlsid, xid〉)
‖ Rj(lsid

R
j , id

R)[if xRlsid = lsidIi ∧ xRid = idI then
out(〈k, lsidRi , xRlsid, xRid〉)

if xRlsid /∈ sI ∧ xRid = idI then
T2(xR, lsidRr , x

R
lsid, x

R
id)

else out(〈xR, lsidRi , xRlsid, xRid〉)

We remark that, for any r:

νs.in(x, y); if
(r,t)>(i,j)

x=
lsidlsid

R
t ∧ xid = idR then out(kr,t, y) else out(x, y)

and
νs.in(x, y); if

(t,r)>(i,j)
xRlsid = lsidIt ∧ xid = idR then out(kt,r, y) else out(x, y)

and (resp. with S1)

νs.in(y); if
(r,t)>(i,j)

xIlsid /∈ sR ∧ xIid = idR then T1(y)

and (resp. with S2)

νs.in(y); if
(t,r)>(i,j)

xRlsid /∈ sI ∧ xRid = idI then T2(y)

are Os-simulatable by the attacker as all lsidRj , lsid
I
j are simulatable with Os

They are then all simulatable in parallel at the same time (Theorem 1) and using function
application (Theorem 4), we get:

94

‖r≤NKEr[if
(r,t)>(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

,

if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]∼=O
‖(r,s)6=(i,j)Ir(lsid

r
I , idI); if

(r,t)>(i,j)
xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉)

‖Rs(lsidsR, idR); if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRs , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRs , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidRs , x

R
lsid, x

R
id)

else out(〈xR, lsidRs , xRlsid, xRid〉)
Ii(lsid

i
I , idI); if

(i,t)>(i,j)
xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIi , xIlsid, xIid〉)
if xIlsid = lsidRj ∧ xIid = idR) then

out(〈k, lsidIi , xIlsid, xIid〉)
if

(i,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIi , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidIi , x

I
lsid, x

I
id)

else out(〈xI , lsidIi , xIlsid, xIid〉)

Rj(lsid
j
R, idR); if

(t,j)>(i,j)
xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRj , xRlsid, xRid〉)
if xRlsid = lsidIi ∧ xRid = idI) then

out(〈k, lsidRj , xRlsid, xRid〉)
if

(t,j)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRj , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidRj , x

R
lsid, x

R
id)

else out(〈xR, lsidRj , xRlsid, xRid〉)
95

After α-renaming k into ki,j , this is exactly G1
(i,j)
∼= G0

(i,j), which concludes the proof.
Note that the advantage, for any (i, j), against G1

(i,j)
∼= G0

(i,j) is bounded, using the bound
from Theorem 4, by the the advantage against G1

(0,0)
∼= G0

(0,0), the case where the most things
are simulated.

Corollary 1. Let Oke, O be oracles and KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2

a key exchange protocol, such that I binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is

disjoint of the oracle support. Let idI , idR be names and sI = {lsidIi }i∈N,sR = {lsidRi }i∈N sets
of names :

1. ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.

KEi[out(〈xI , lsidIi , xIlsid, xIid〉), out(〈xR, lsidRi , xRlsid, xRid〉)]‖out(〈lsidRi , lsidIi 〉)

is Oke simulatable)).

2. s is disjoint of the support of O.

3.

KE0[out(〈xI , lsidI0, xIlsid, xIid〉), out(〈xR, lsidR0 , xRlsid, xRid)] ∼=Oke,O
KE0[if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xlsid, xid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI0 ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

Then, for any N which depends on the security parameter:

‖i≤NKEi[out(xI), out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Proof. Let us fix N , which may depend on the security parameter.
Ry direct application of Theorem 5, with P := I(lsidI , idI); out(〈xI , lsidI , xIlsid, xIid〉)‖R(lsidR, idR); out(〈xR, lsidR, xRlsid, xRid〉),

96

R := KE, and Q being the right handside of hypothesis (3), we get that:

‖i≤NKEi[out(〈xI , lsidIi , xIlsid, xIid〉), out(〈xR, lsidRi , xRlsid, xRid〉)]∼=O,Oke
‖i≤N−1KEi[out(〈xI , lsidIi , xIlsid, xIid〉), out(〈xR, lsidRi , xRlsid, xRid〉)]

‖KE0[if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI , xlsid, xid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR, xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR, xRlsid, xRid〉)]

This allows us to obtain the hypothesis of Proposition 40, where Os is instantiated with
Oke. We thus conclude using Proposition 40.

Corollary 2. Let OT , Oke, Or,OP,Q be oracles and
KEi[_1,_2] := I(lsidIi , id

I);_1‖R(lsidRi , id
R);_2 a key exchange protocol, such that I

binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is disjoint of the oracle support. Let

idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.
Let p = {idI , idR}, P (x, y) = P1(x, y)‖P2(x, y) and Q(x, y, z) = Q1(x, y, z)‖Q1(x, y, z) be

parameterized protocols, such that Nl(P,Q) is disjoint of the oracle support.

I-1 ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.KEi[out(xI), out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -simulatable)).

I-2 s is disjoint of the support of OP,Q.

I-3

KE0[out(〈xI , lsidI0, xIlsid, xIid〉), out(〈xR, lsidR0 , xRlsid, xRid〉) ∼=OT ,OP,Q
KE0 [if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xIlsid, xIid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

and

R-1 ∀ 1 ≤ i, j ≤ n, νp, ki,j .P0(p, ki,j) is Or-simulatable.

R-2 ∀ 1 ≤ i ≤ n, νp, ki,j .Q0(p, ki,j) is Or-simulatable.

R-3 s is disjoint of the support of Ok.

97

R-4 P0(p, k) ∼=Or,Oke Q0(p, k)

and

C-1 νp.in(xIi).P
I
i (xIi)‖in(xRi).PRi (xRi)is OP,Q-simulatable.

1. νp.

‖i≤n KEi[if (xIid = idR) then
if

1≤j≤n
(xIlsid = lsidRj ∧ xIid = idR) then

out(〈i, j〉)
else P Ii (xIi),

if (xRid = idI) then
if

1≤j≤n
(xRlsid = lsidIj ∧ xRid = idI) then

out(〈i, j〈)
else PRi (xRi)]

is Oke-simulatable.

Then, for any n which may depend on the security parameter:

‖i≤nKEi[P Ii (xIi), P
R
i (xRi)] ∼=

‖i≤nKEi[if xIid = idR then QIi (x
I
i) else P Ii (xIi), if x

R
id = idI then QRi (xRi) else PRi (xRi)]

Proof. Using Corollary 1 on hypothesis A-1,A-2 and A-3, we get that, for all N :

‖i≤NKEi[out(xI), out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Now, as νp, lsidIi , lsid
R
i .in(x).P (x)‖in(x).Q(x) is Op-simulatable (hypothesis C-1), using

twice Theorem 4 we get that :

‖i≤NKEi[P I(xI), PR(xR)] ∼=Op
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

P I(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

PR(kj,i)
else PR(xR)]

and

98

‖i≤NKEi[if xIid = idR then QI(xI) else P I(xI), if xRid = idI then QR(xR) else PR(xR)] ∼=Op
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

QI(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

QR(kj,i)
else PR(xR)]

Moreover, using Theorem 5 on hypothesis B-1,B-2,B-3 and B-4, we get that

∀n ‖i≤N2
Pi(p, ki) ∼=Ok Qi(p, ki)

Combined with Theorem 2 on the Ok simulatability of the key exchange (hypothesis C-2)
we get:

‖i≤N KEi[if (xIid = idR) then
if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

P I(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

PR(kj,i)
else PR(xR)]

∼=
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

QI(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

QR(kj,i)
else PR(xR)]

We thus conclude with transitivity.

Corollary 3. Let OKE, Or,OP,Q be oracles and

KEi[_1,_2] := Ii(lsid
I
i , id

I);_1|Ri(lsid
Ri, idR);_2

a key exchange protocol with Ii(lsid
I
i , id

I) := I0
i (lsidIi , id

I); I1
i (xI) and Ri(lsid

R
i , id

R) :=
R0
i (lsid

R
i , id

R);R1
i (x

R) such that I0 binds xI , xid, xlsid, R0 binds xR, xid, xlsid and Nl(KE) is
disjoint of the oracles support. Let p = {idI , idR}, Pi(x, y) = P Ii (x, y)‖PRi (x, y),Q(x, y, z) =

99

QIi (x, y, z)‖QRi (x, y, z), Ci(z) and Di(z) be protocols, such that Nl(P,Q,C,D) is disjoint of
the oracles support.

Let idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

A-1 ∀i ∈ N, (νlsidIi , idI , lsidRi , idR.Ci(p)‖I0
i (lsidIi , id

I); out(xI)‖R0
i (lsid

R
i , id

R); out(xR) is OKE
simulatable)).

A-2 s is disjoint of the support of Op.

A-3

Ci(p)‖I0
0 (lsidI0, id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1(xI); out(xI)

else out(〈xI , lsidI0, xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1(xR); out(xR)

else out(〈xR, lsidR, xRlsid, xRid〉)∼=OKE ,Op
Ci(p)‖I0(lsidI0, id

I); if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI0, xIlsid, xIid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
I1(xR);⊥

else out(〈xI , lsidI , xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
I1(xR);⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)

and for any N which may depend on the security parameter:

B-1 ‖i≤N2
Di(p)‖I1

i (ki);P
I
i (p, ki)‖B1

i (ki);P
R
i (p, ki) ∼=Or,Ok ‖i≤n

2
Di(p)‖I1

i (ki);Q
I
i (p, ki)‖B1

i (ki);Q
R
i (p, ki)

and

C-1 νp, lsidIi , lsid
R
i .Di(p)‖in(x).Pi(x) ‖in(x).Qi(x)‖in(x).I1

i (x);P Ii (x)‖in(x).R1
i (x);PRi (x)

‖in(x).I1
i (x);QIi (x)‖in(x).R1

i (x);QRi (x) is Op simulatable.

C-2 νp.

‖i≤N Ci(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(〈i, j〉)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(〈i, j〉)
else if (xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

is Ok simulatable.

100

Then, for any n:

‖i≤NCi(p)‖Di(p)‖KEi[P Ii (xI), PRi (xR)] ∼=

‖i≤NCi(p)‖Di(p)‖KEi[if xIid = idR then QIi (x
I) else P Ii (xI), if xRid = idI then QRi (xR) else PRi (xR)]

Proof. Let N an integer, which may depend on the security parameter. Ry application of
Theorem 5, with P and R as the left handside of hypothesis A-3, and Q being the right
handside of hypothesis A-3, we get that:

‖i≤n−1Ci(p)‖I0
i (lsidIi , id

I); out(xI)‖R0
i (lsid

R
i , id

R); out(xR)

‖

Cn(p)‖I0
n(lsidIn, id

I); if (xIlsid /∈ sR ∧ xid = idR then
I1
n(xI); out(xI)

else out(xI)
‖R0

n(lsidRn , id
R); if xIlsid /∈ sR ∧ xIid = idI then

R1
n(xR); out(xR)

else out(xR)
∼=OP
‖i≤N−1Ci(p)‖I0

i (lsidIi , id
I); out(xI)‖R0

i (lsid
R
i , id

R); out(xR)
‖ Cn(p)‖I0

n(lsidIn, id
I); if xlsid = lsidnR ∧ xIid = idR then

out(k)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
n(xI); bad

else out(xI)
‖R0

n(lsidRn , id
R)[if xRlsid = lsidnI ∧ xid = idI then

out(k)
else if xRlsid /∈ sI ∧ xRid = idI then
R1
n(xR); bad

else out(xR)

Using Proposition 40, with S1 = I1(xI); out(xI), S2 = R1(xR); out(xR), R1 = I1(xI);⊥, R2 =
R1(xR);⊥, we get that:

101

‖i≤N

Ci(p)‖I0
i (lsidIi , id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); out(xI)

else out(xI)
‖R0

i (lsid
R
i , id

R); if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R); out(xR)
else out(xR)

∼=OP
‖i≤N Ci(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidjR ∧ xIid = idR then

out(ki,j)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else out(xI)

‖R0
i (lsid

R
i , id

R)[if
1≤i≤N

xRlsid = lsidjI ∧ xRid = idI then

out(kj,i)
else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R); bad
else out(xR)

Now, with this context, using twice using Theorem 4 with the simulatability of νp, lsidIi , lsid
R
i .Di(p)

‖in(x).Pi(x)‖in(x).I1
i (x);P Ii (x)‖in(x).R1

i (x);PRi (x) from C-1, we may get that:

‖i≤NCi(p)‖Di(p)‖I0
i (lsidIi , id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);P Ii (xI)

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1
i (x

R);PRi (xR)
else R1

i (x
R);PRi (xR)

∼=OP
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤k≤m

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

102

We can simplify the left handside of the equivalence and get that:

‖i≤NCi(p)‖Di(p)‖I0
i (lsidIi , id

I); I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); R1
i (x

R);PRi (xR)
∼=OP

‖i≤N Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if
1≤j≤m

xIlsid = lsidjR ∧ xid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if
1≤j≤N

xRlsid = lsidjI ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

Ry performing the same operation with Q, we can also get:

‖i≤N

Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if xIid = idR then
I1
i (xI);QIi (x

I)
else I1

i (xI);P Ii (xI)
‖R0

i (lsid
R
i , id

R); if xRid = idI then
R1
i (x

R);QRi (xR)
else R1

i (x
R);PRi (xR)

∼=OP
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);Q

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P I(xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);Q

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

To conclude with transitivity, we must prove the equivalence between the two idealized
version with either P or Q.

Combining Hypothesis B-1 with Theorem 2 on the Ok simulatability of the key exchange
(hypothesis C-2) we do get the necessary equivalence to conclude:

103

‖i≤N Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidjI ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R); bad
else R1

i (x
R);PRi (xR)

∼=
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);Q

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);Q

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

F.6 Computational soundness

Lemma 4. For protocols P,Q,A,B, an oracle O, and a list Ol of protocol oracles,

AO,O(A‖P)?(B‖Q) ≺ ε⇔ AO,Ol,OA?B ,OP?Q ≺ ε

Proof. For protocols P,Q such that C(P)∩C(Q) = ∅, for any message m, random tape ρs and
history tape θ, we have by definition of the semantic of ‖ and the definition of the parallel
oracles:

OP‖Q(ρs, θ)(m) =< OP ,OQ > (ρs, θ)(m)

The desired result then immediately follows.

Lemma 29. Given two protocols P,Q, random tapes ρr, ρs, a cryptographic library Mf and
an oracle O, we have:

∀M ⊃Mf . M |=O t̃P ∼ t̃Q
⇔

P ∼=O Q

104

Proof. Let us write t̃P = t̃0P , . . . , t̃
n
P . Without loss of generality, we assume that every distin-

guisher makes exactly n calls to the oracle, if it is not the case we simply add dummy calls
for the remaining ones.

We start by proving the top to bottom implication. Given a distinguisher BO,OP?Q and
η, ρr, we let m0, . . . ,mk (resp. m′0, . . . ,m

′
k) be the successive contents of the oracle input

tape along the computation of AO(ρs,ρO),OP (ρs) (resp. AO(ρs,ρO),OQ(ρs)). Let σ = {x0 7→
m0, . . . , xk 7→ mk} (resp. σ′ = {x1 7→ m′1, . . . , xk 7→ m′k}). Consider now the PPTOM AOgk ,
which, on input b0, . . . , bk, η, ρr, executes the same code as B, however replacing the ith call
to the oracle OP (resp. OQ), i ≤ k, using bi instead of the oracle reply.

The result of AOgk is then what B would have queried at the k + 1 oracle call. It follows
that AOgk(b0, . . . , bk, η, ρr) = mk (resp. m′k) if bi is the reply of OP (resp. OQ) on the query
mi, for i < k. This defines an extensionM ofMf .

Thanks to the Lemma 28, for every ρs, ρr, ρO, for every i ≤ k, [[tiP]]σ,ηρs,ρr,ρO = OP (ρs,m0, . . . ,mi−1)

and [[tiQ]]σ
′,η
ρs,ρr,ρO = OQ(ρs,m

′
1, . . . ,m

′
i−1). Now, according to our definition of t̃P and thanks to

the interpretation of gi, for every ρs, ρr, ρO, for every i ≤ k, [[t̃iP]]ηρs,ρr,ρO = OP (ρs,m0, . . . ,mi−1)

and [[t̃iQ]]ηρs,ρr,ρO = OQ(ρs,m
′
0, . . . ,m

′
i−1).

If we now consider the output of AOgn , we have that, for every ρr, ρO,

AOgn([[t̃0P]]ηρs,ρr,ρO , . . . , [[t̃
k
P]]ηρs,ρr,ρO , η, ρr) = BO,OP

and AOgn([[t̃0Q]]ηρs,ρr,ρO , . . . , [[t̃
n
Q]]ηρs,ρr,ρO , η, ρr) = BO,OQ . Thus,Mf and AOgn form a distinguisher

on t̃P ≈MO t̃Q, which wins with the same probability as B.
For the bottom to top direction, we are given a computational modelM and a distinguisher

BO on t̃P ≈MO t̃Q. We consider φPi and σP as defined for t̃P , and φ
Q
i and σQ as defined for t̃Q.

Thanks to the Lemma 28, for every ρs, ρr, ρO, for every i ≤ k,

[[tiP]]σP ,ηρs,ρr,ρO = OP (ρs, [[g0()]]σP ,ηρs,ρr,ρO , . . . , [[gi−1(φPi−1)]]σP ,ηρs,ρr,ρO)

and [[tiQ]]
σQ,η
ρs,ρr,ρO = OQ(ρs, [[g0()]]

σQ,η
ρs,ρr,ρO , . . . , [[gi−1(φQi−1)]]

σQ,η
ρs,ρr,ρO). Then, with the definition of

t̃P , we have for every ρs, ρr, ρO, for every i ≤ k,

[[t̃iP]]ηρs,ρr,ρO = OP (ρs, [[g0()]]ηρs,ρr,ρO , . . . , [[gi−1(φPi−1)]]ηρs,ρr,ρO)

and [[t̃iQ]]ηρs,ρr,ρO = OQ(ρs, [[g0()]]ηρs,ρr,ρO , . . . , [[gi−1(φQi−1)]]ηρs,ρr,ρO).
We may now consider the PPTOM B′O,OP?Q , which :

• Set m0 to the result of [[g0()]]ηρs,ρr,ρO .

• For i going from 0 to n− 1:

– set ti to the result of OP?Q(mi)

– set mi+1 to the result of [[gi+1(t0, . . . , ti)]]
σP ,η
ρs,ρr,ρO)

• set tn to the result of OP?Q(mn)

• outputs BO(t0, . . . , tn)

105

With our previous observation, t0, . . . , tn is either equal to [[t̃P]]ηρs,ρr,ρO or [[t̃Q]]ηρs,ρr,ρO , and
as BO is a distinguisher on t̃P ≈MO t̃Q, B′O,OP?Q is a distinguisher.

Lemma 22. For any oracle O with support n, the axiom ∀k, k′ /∈ n, k ∼ k′ is O-sound.

Proof. We are given a cryptographic library, and oracle O with support n, and two names k,
k′ not in the support. We are given a AO which is a distinguisher over k ∼ k′. We define a
PPTTM A′ which on input (m, ρr, 1

η) :

• Splits ρr into three distinct infinite tapes ρso, ρra, ρro

• Simulates AO(ρso,ρro)(m, ρra, 1
η)

Let us a prove that A′ is a distinguisher over k ∼ k′, which contradicts the unconditional
soundness of this axiom when there is no oracle.

We denote πk(ρs, η) the tapes where every bit of ρs which does not correspond to a name
of k is set to 0, and similarly πkc(ρs, η) where all bits for k are set to 0. We then have for any
PPTOM AO:

|Pρs,ρr,ρO{AO(ρs,ρO)([[k]]σ,ηρs , ρr, 1
η) = 1}

=1 Pρs,ρr,ρO{AO(πk(ρs,η),ρO)([[n]]σ,ηπkc (ρs,η), ρr, 1
η) = 1}

=2 Pρs1,ρs2,ρr,ρO{AO(ρs1,ρO)([[n]]σ,ηρs2 , ρr, 1
η) = 1}

=3 Pρso,ρs,ρra,ρro{AO(ρso,ρro)([[k]]σ,ηρs , ρra, 1
η) = 1}

=4 Pρs,ρr{A′([[k]]σ,ηρs , ρr, 1
η) = 1}

1. Thanks to the definition of support, the oracle answers the same on πk(ρs, η) and ρs;

2. we split ρs in two, to replace independent tapes πk(ρs, η) and πkc(ρs, η);

3. we rename random tapes;

4. by construction of A′.

This shows that A′ has the same advantage as AO against k ∼ k′, which concludes the
proof.

106

	I The Framework
	Introduction
	Our contributions
	Related Works

	Protocols and Indistinguishability
	Syntax and semantics of terms
	Syntax of the protocols
	Semantics of the protocols
	Stateless Oracle Machines
	Computational indistinguishability

	Simulatability
	Protocol Simulation
	Generic Oracles for Tagged Protocols

	Main Composition Theorems
	Composition without State Passing
	Composition with State Passing
	Unbounded Replication

	Unbounded Sequential Replication

	II Applications to Key Exchange
	Application to Key Exchanges
	Our Model of Key Exchange
	Proofs of Composed Key Exchange Security

	Basic Diffie-Hellman Key Exchange
	Extension to Key Confirmations
	Proofs with Key Confirmations

	Application to SSH
	The SSH Protocol
	Security of SSH
	SSH with Forwarding Agent

	III Composition in the CCSA logic
	Oracles in the CCSA Logic
	Syntax and Semantics
	Oracle Soundness

	Computational Soundness of the logic
	Protocols
	Introduction of attacker's functions

	Extension to the Model for Unbounded Replication
	Messages
	Syntax of messages
	Semantics of terms

	Protocols
	Atomic protocols
	Protocol Algebra
	Formal definition of a protocol execution
	Formal definition of protocol oracles

	A case study : signed DDH
	Key exchange security
	Proof for 3
	Real or random of the key
	Authentication

	Conclusion for Signed DDH

	An application to SSH
	Presentation of SSH
	The security of the protocol without forwarding agent
	Proof of real of random
	 Proof of Ax |-3mu2 2
	Proof of Ax |-3mu21 21

	Proof for the authentication

	SSH with forwarding agent
	Scheme of the proof
	First application of compo:cor:keyconfcompunbound
	Second application of compo:cor:keyconfcompunbound

	Proofs
	Formal Corollary for Key Exchange
	Formal Corollary for Key Confirmations
	Oracle Simulation
	Autocomposition Results
	Key Exchanges
	Computational soundness

