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Passwords are still the most widespread means for authenticating users, even though they have been shown
to create huge security problems. This motivated the use of additional authentication mechanisms in so-called
multi-factor authentication protocols. In this article, we define a detailed threat model for this kind of proto-
col: While in classical protocol analysis attackers control the communication network, we take into account
that many communications are performed over TLS channels, that computers may be infected by different
kinds of malware, that attackers could perform phishing, and that humans may omit some actions. We for-
malize this model in the applied pi calculus and perform an extensive analysis and comparison of several
widely used protocols—variants of Google 2-step and FIDO’s U2F (Yubico’s Security Key token). The analysis
is completely automated, generating systematically all combinations of threat scenarios for each of the pro-
tocols and using the PROVERIF tool for automated protocol analysis. To validate our model and attacks, we
demonstrate their feasibility in practice, even though our experiments are run in a laboratory environment.
Our analysis highlights weaknesses and strengths of the different protocols. It allows us to suggest several
small modifications of the existing protocols that are easy to implement, as well as an extension of Google
2-step that improves security in several threat scenarios.
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1 INTRODUCTION

Users need to authenticate to an increasing number of electronic services in everyday life: email
and bank accounts, agendas, e-commerce sites, and so on. Authentication generally requires a
user to present an authenticator, that is, “something the claimant possesses and controls (typically
a cryptographic module or password) that is used to authenticate the claimant’s identity” [14]. Au-
thenticators are often classified according to their authentication factor:
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e what you know, e.g., a password or a pin code;
e what you have, e.g., an access card or physical token;
e what you are, e.g., a biometric measurement.

Although these different mechanisms exist, passwords are still by far the most widely used
mechanism, despite the fact that many problems with passwords were already identified in the
late 1970s when they were mainly used to grant login into a computer [19]. Since then, things
have become worse: Many people choose the same weak passwords for many purposes, and large
password databases have been leaked. Studies have shown that the requirement to add special
characters does not solve these problems, and the latest recommendations by NIST [13] even dis-
courage this practice.

To palliate password weaknesses, multi-factor authentication protocols combine several authen-
tication factors. Typically, instead of using only a login and password, the user proves possession
of an additional device, such as his or her mobile phone or a dedicated authentication token. Two
popular protocols are Google 2-step [12] (which actually regroups several mechanisms) and FIDO’s
UZ2F [24] (the version implemented by Yubico for their Security Keys), which is supported by many
websites, including Google, Facebook, and GitHub. In (one version of) Google 2-step, the user re-
ceives a verification code on his or her phone to be copied onto his or her computer, while FIDO’s
UZF requires the use of a specific USB token that must be plugged into the computer.

Our contributions. In classical protocol analysis, the attacker is supposed to control the com-
munication network. However, the protocols we study in this article make extensive use of
TLS communications and are supposed to provide security even if some devices are infected by
malware.

We therefore propose a novel, detailed threat model for multi-factor authentication protocols
that takes into account many additional threats.

e Compromised passwords: Our basic assumption is that the user’s password has been com-
promised. Otherwise multi-factor authentication would not be required.

e Network control: We define a high-level model of TLS channels that guarantees confidential-
ity of messages, authentication of the server if the user verifies the corresponding certificate,
and additionally ensures, through inclusion of session ids, that messages of different TLS
sessions cannot be mixed. Nevertheless, we allow the attacker to delay or block messages.
Our model also contains a notion of fingerprint that is used in some protocols to identify
machines, and we may give the adversary the power to spoof such fingerprints.

e Compromised platforms: We give a structured and fine-grained model for malware. We take
an abstract view of a system as a set of input and output interfaces, on which an adversary
may have read or write access, depending on the particular malware.

e Human aspects: We take into account that most of these protocols require some interaction
with the human user. We model that humans may not correctly perform these steps. More-
over, we model that a human may be a victim of phishing, or pharming, and hence willing
to connect to and enter his or her credentials on a malicious website.

e “Trust this computer mechanism™ To increase usability, several websites, including Google
and Facebook, offer the possibility to trust a given machine, so that the use of a second
factor becomes unnecessary on these machines. We add this trust mechanism to our model.

We completely formalize these threat scenarios in the applied pi calculus.

We analyse several variants of the Google 2-step and FIDO’s UZF protocols in this model. The
analysis is completely automated, using scripts to generate systematically all combinations of
threat scenarios for each of the protocols and using the PROVERIF tool for automated protocol
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analysis. The scripts and PROVERIF source files are available in Reference [22]. Even though we
eliminate threat scenarios as soon as results are implied by weaker scenarios, the analysis required
over 6,000 calls to PROVERIF yet finishes in only a few minutes. Our analysis results in a detailed
comparison of the protocols that highlights their respective weaknesses and strengths. It allows
us to suggest several small modifications of the existing protocols that are easy to implement yet
improve their security in several threat scenarios. In particular, the existing mechanisms do not
authenticate the action that is performed, e.g., a simple login may be substituted by a login enabling
the “trust this computer” mechanism or a password reset. Adding some additional information to
the display may thwart such attacks in many of our threat scenarios. We also propose a new variant
of Google 2-step building on ideas from the FIDO’s U2F protocol.

To validate our model and analysis we verify that the weaknesses we found can indeed be put
into practice. We report on our experiments with the google mail server and a FIDO USB token,
implementing the FIDO’s U2F protocol. Even though our experiments are performed in a laboratory
environment, they confirm the relevance of our models and analyses.

Related work. Bonneau et al. [8] propose a detailed framework to classify and compare web
authentication protocols. They use it for an extensive analysis and compare many solutions for
authentication. While the scope of their work is much broader, taking into account more protocols,
as well as usability issues, our security analysis of a more specific set of protocols is more fine-
grained in terms of malware and corruption scenarios. Moreover, our security analysis is grounded
in a formal model using automated analysis techniques.

Some other attempts to automatically analyse multi-factor authentication protocols were made,
including for instance the analysis of FIDO’s U2F [20], the Yubikey One Time Password [16, 17],
and the Secure Call Authorization protocols [3]. However, those analyses do not study resistance
to malware, nor do they capture precisely TLS channel behavior or fingerprints. Basin et al. [4]
studied how human errors could decrease security. Their model is more evolved than ours on this
aspect. However, we consider more elaborate malware and also check for a stronger authentication
property: An attack where both a honest user and an attacker try to log into the honest user’s
account but only the attacker succeeds is not captured in Reference [4], as they simply check that
every successful login was proceeded by an attempt from the corresponding user to login. In the
same vein, Reference [5] studies minimal topologies to establish secure channels between humans
and servers. Their goal is to establish a secure channel, while we consider entity authentication.
They consider authentic and confidential channels, which we extend by being more fine grained.

2 MULTI-FACTOR AUTHENTICATION PROTOCOLS

In this section, we briefly present the two widely used multi-factor authentication protocols that
we study in this article: (several variants of) Google 2-step and FIDO’s UZF.

2.1 Google 2-step

To improve security of user logins, Google proposes a two-factor authentication mechanism called
Google 2-step [12]. If enabled, then a user may use his or her phone to confirm the login. On their
website, Google recalls several reasons why password-only authentication is not sufficient and
states that “2-Step Verification can help keep bad guys out, even if they have your password.” Google
2-step proposes several variants. The default mechanism sends to the user, by SMS, a verification
code to be entered into his or her computer. An alternative is the “One-Tap” version, where the
user simply presses a Yes button in a pop-up on his phone. The second version avoids copying of a
code and is expected to improve the usability of the mechanism. This raises an interesting question
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about the tradeoff between security and ease of use. We also present a more recent version of “One-
Tap” that we dubbed “Double-Tap.”

As Google does not provide any detailed specification of the different authentication mecha-
nisms, the following presentations are based on reverse engineering. As the protocols are simple
and do not contain complex cryptographic operations, the reverse engineering is rather straight-
forward, based on the operations visible by the user and behavioral tests. Notice though that we
may have omitted some checks performed by the server, based on some information that is not en-
tered by the user, such as the timing of the login. As we validated inside a laboratory environment
the attacks found systematically, our protocol models appear to be precise enough. All experiences
presented in this article were performed in January and February 2018.

2.1.1  Google 2-step with Verification Codes: G2V. In Figure 1, we depict the different steps of
the protocol. All communications between the user’s computer and the server are protected by
TLS. The three main steps of the protocol are:

(1) the user enters his or her login and password into his or her computer, which forwards
the information to the server;

(2) upon receiving login and password, the server checks them. In case of success, the server
generates a fresh six-digits code and sends an SMS of the form “G-****** is your Google
verification code” to the user’s mobile phone;

(3) the user then copies the code to his or her computer, which sends it to the server. If the
correct code is received, then login is granted.

When the password is compromised, the security of the protocol only relies on the code sent
on the SMS channel. Thus, if the attacker can intercept the code produced in step (2) before it is
received by the server, then the attacker could use the code to validate his or her own session and
break the security. This could be done, for instance, by intercepting the SMS, compromising the
phone with a malware, or through a key-logger on the user’s computer.

2.1.2  Google 2-step with One-Tap: G20T. In Figure 2, we present the One-Tap version of Google
2-step, the main steps being

(1) the user enters his or her login and password into his or her computer, which forwards
the information to the server;

(2) the server then creates a fresh random token that is sent to the user’s mobile phone. Unlike
in the previous version, the communication between the server and the phone is over a
TLS channel rather than by SMS;
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(3) the phone displays a pop-up to the user who can then confirm the action or abort it, by
choosing “Yes” or “No,” respectively;
(4) in case of confirmation the phone returns the token and login is granted.

Note that in its most basic version, the user only answers a yes/no question. Google announced
in February 2017 [23] that the pop-up would also contain in the future a fingerprint of the com-
puter, including information such as IP address, location, and computer model. However, this new
version has yet to be implemented on some of the smartphones we used for tests. In the following,
we will analyse both versions, with (G20T") and without (c20T) the fingerprint. Remark that in
steps (2) to (4), the authentication token is never sent to the computer. This is an important differ-
ence with the previous version, disabling attacks based on compromising the computer, e.g., with
a key-logger. The independence of the second factor with respect to the computer then improves
the security. Adding a fingerprint to the screen additionally improves the security, as it allows the
user to detect a suspicious login from an unknown location.

2.1.3 Google 2-step with Double-Tap: G2DT®". The issue with One-Tap compared to the code
version is that the user is likely to simply press “Yes” without reading any displayed information.
To mitigate this issue, Google sometimes uses a version that we call Double-Tap. We were not able
to find a public documentation of this variant, but we saw it at work in practice. The first step is
the One-Tap protocol previously presented, with the display of the fingerprint. It is then followed
by a second step, where a two digit number is displayed on the user’s computer screen, and the
same number is displayed on the user phone along with two other random numbers. The user is
then asked to select on his or her phone the number displayed on their computer. This selection
mechanism mimics the behavior of a verification code displayed on the computer and that the user
should enter on his or her phone but with the benefits of greater simplicity and ease of use. If we
abstract the selection mechanism used to simplify the user experience and simply consider that
the user is entering the data on his or her phone, then the protocol outline is shown in Figure 3.

2.2 FIDO’s Universal 2nd Factor: U2F

FIDO is an alliance that aims at providing standards for secure authentication. They propose many
solutions under the U2F, FIDO, and FIDO2 [6, 11] (also known as the WebAuthn) standards. We
only study partially the Universal 2nd Factor (U2F) protocol [24], focusing on the version using
a USB token as the second factor. More precisely, we study the implementation of the standard
performed by the Yubico company, producing the Yubikey token. The U2F protocol relies on a
token able to securely generate and store secret and public keys and performs cryptographic
operations using these keys. Moreover, the token has a button that a user must press to confirm
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a transaction. To enable second-factor authentication for a website, the token generates a key
pair! and the public key is registered on the server. This operation is similar to the registration
of a phone as a second factor in the case of a Google account. We must assume that this step was
performed securely by the user at a time where his or her password was secure, and ideally at the
time of the creation of the account. Else, no security may come from the second factor. Once the
registration has been performed, the token can then be used for authenticating; the steps of the
authentication protocol are presented in Figure 4 and can be explained as:

(1) the computer forwards the user’s login and password to the server;

(2) the server generates a challenge that is sent to the user’s computer;

(3) upon reception, the browser generates a payload containing the URL of the server, the
challenge, and the identifier of the current TLS session to be signed by the token;

(4) the user confirms the transaction by pressing the token button;

(5) the token signs the payload, and the signature is forwarded to the server for verification.

Compared to 20T and G2DT'P", the second factor and the user’s computer are not independent,
which may lead to attacks base on malware on the computer. However, thanks to the signature
of the payload, the signature sent back to the server is strongly linked to the current session, and
session confusion is significantly harder. Moreover, as the signature includes the URL seen by the
user, this may counter phishing attacks.

2.3 Disabling the Second Factor on Trusted Devices

When designing an authentication protocol, as also emphasized in Reference [8], a key require-
ment should be usability. On a user’s main computer, used on a daily basis, it may not be necessary
to use a second factor: For instance, using a second factor each time a user pops his or her emails on
their main laptop would be very cumbersome. This may explain why several providers, including
Google and Facebook, propose to trust specific computers and disable the second-factor authen-
tication on these particular machines. This is done by checking a “Trust this computer” option
when initiating a two-factor authenticated login on a given machine. Technically, the computer
will be identified by a cookie and its fingerprint. A fingerprint typically includes information about
the user’s IP address, inferred location, OS or browser version, and so on. As those elements will
obviously change over time, in practice, a distance between fingerprints is evaluated, and if the
fingerprint is too far from the expected one, the second-factor authentication will be required. To
the best of our knowledge, this feature is not documented and the full mechanism has not been
studied previously even though it may lead to security issues. To capture such security issues we
will include the “Trust this computer” mechanism in our analysis.

2.4 Token Binding

While cookies are a common mechanism widely used to remember a computer after a successful
login, a new protocol called TOKENBINDING [21] is under development. Its usage is recommended
by the FIDO standards, but providers are free to use it or not. After a successful login, a public
key may be bound to the user account, and the corresponding secret key will be used to sign
the session identifier of the following TLS sessions. It may be seen as a partial U2F where the
keys are directly stored on the computer. We describe the protocol in Figure 5. If a computer has
been successfully authenticated, then the registration part of TOKENBINDING may be enabled and
the computer may generate a new secret key, and simply send the corresponding public key to

In the case of the Yubikey token, the key is generated by hashing a fresh random with a fixed secret stored inside the
token.
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the server. In parallel, the server may send a classical cookie to the computer. For later logins,
the server will ask for the cookie but also for the signature of the TLS session identifier by the
registered public key. We remark that the cookie and the signature may actually be sent at the
same time, and TOKENBINDING thus does not require more communications than classical cookie
authentication after the registration.

3 THREAT MODEL

To conduct an in depth analysis of multi-factor authentication protocols, we consider different
threat models, types of attacks and corresponding attacker capabilities. We will consider a Dolev-
Yao attacker [9] that controls any compromised parts and, classically, the network. However, many
of the protocols we study use channels protected by TLS. The attacker may block a message,
even if he or she cannot read or write on such channels. Moreover, as we are studying multi-
factor authentication protocols, to assess additional protection offered by these protocols, we are
interested in the case where the user’s password has been compromised. Therefore, the most basic
threat scenario we consider is the one where the attacker has (partial) control over the network,
and knows the users’ passwords.

There are, however, several ways the attacker can gain more power. Our aim is to present a
detailed threat model, reflecting different attacker levels that may have more or less control over
the user’s computer, the network, or even over the user itself. Those levels aim at capturing the
attacker capabilities that are necessary for a given attack.

3.1 Malware-based Scenarios

The first range of scenarios covers malware that give an attacker control over parts of a user’s
device, also known as man-in-the-machine attacks.
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3.1.1 Systems as Interfaces. To give a principled model of malware and what parts of a system
the malware may control, we take an abstract view of a system as a set of interfaces on which
the system receives inputs and sends outputs. Some interfaces may only be used for inputs, while
other interfaces may be used for outputs, or both. For example, the keyboard is an input interface,
the display is an output interface, and the network is an input and output interface. Compromise
of part of the system can then be formalized by giving an attacker read or write access to a given
interface. On a secure system, the attacker has neither read nor write access on any interface.
Conversely, on a fully compromised system the attacker has read-write access on all interfaces.

More formally we consider that for each interface the attacker may have no access (NA), read-
only access (RO), write-only access (WO), or read-write access (RW).

We may specify many different levels of malware by specifying for every interface two access
levels, one for inputs and one for outputs on the interface. Obviously, for a given interface not all
combinations need to be considered: A read-write access will yield a stronger threat model than
read-only access, write-only or no access.

We will suppose in this article that it is harder to control the outputs of an interface than its in-
puts: Therefore a given access level to the outputs will imply the same access level on the interface
inputs. Although not a limitation of our model, this choice is motivated by practical considera-
tions. Running, for instance, a key-logger does not require specific rights, because the keyboard
data are completely unprotected in the OS. FIDO devices are identified by the OS as a keyboard (at
least on Linux systems). However, reading data sent by an application to a USB device, i.e., having
read access on the USB interface’s output, may require corruption of the driver (or in the case of
Linux enable the “USBmon” module), which requires specific privileges. Similarly, we suppose that
having write access implies having read access. This yields for each interface five levels that can
be organised as a lattice depicted in Figure 6.

3.1.2 Malware on a Computer. For a computer, we will consider four interfaces:

o the USB interface, capturing for instance the keyboard, or a U2F USB key, with all possible
types of access;

e the display, the computer screen, with only output interfaces;

o the TLS interface, capturing the network communications, but by always assuming that the
attacker has the same level of control over inputs and outputs;

o the hard drive interface, capturing control of the storage of the computer, with all possible
types of access.

We can succinctly describe a malware on a computer by giving for each interface the attacker’s
rights for both inputs and outputs of this interface. We use the notation M,'Etilfcl out-aces: Where

interf might be TLS, USB, hdd or dis, and accl and acc2 might be RO or R‘W, to denote that the
attacker has rights accl on the inputs, respectively rights acc2 on the outputs, of interface interf.
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By convention, if we do not specify any access level, then it means that the attacker has no
access. A key-logger is for instance denoted with M]lisqg o- If the access level is the same both
for the inputs and the outputs, as we always assume for TLS, then we may write MI)E%(W, thus
capturing the fact that the attacker may have full control over the user browser, or that he or she
might have exploited a TLS vulnerability.

Remark that we give a very high-level threat model for TLS, only considering read and write ac-
cesses. While this subsumes all possible capabilities, this does not reflect precisely the capabilities
that an attacker may gain through XSS or CSRF attacks. However, such attacks tend to be linked to
the actual implementation of the webserver or of the browser rather than being protocol specific.
Furthermore, capturing those attacks requires a very fine grained model of the web infrastructure,
similar to the one presented by Fett et al. [10]. Such a fine-grained model would break the automa-
tion of our analysis, which was already at the limit of PROVERIF’s capabilities (minor changes to

the model lead to non termination of PROVERIF).

3.1.3 Malware on a Phone. For a mobile phone, the type of interface may depend on the pro-
tocols, with, for instance, SMS inputs or TLS inputs. To simplify, we will consider a phone to have
only one input and one output interface. We thus only consider a generic device interface called
dev, with all possible access levels. Mﬁne:;e o then corresponds for instance to the attacker having
broken the SMS encryption or to some malware on the phone listening to inputs.

3.2 Fingerprint Spoofing

Whenever a user browses the Internet, the user provides information about him- or herself, called
the fingerprint. Those elements will be very useful later for additional checks in our protocols,
and as we mentioned Google is adding this kind of details to their One-Tap protocol. However, in
some cases the attacker might be able to obtain the same fingerprint as a given user. While some
elements, such as the OS version, are rather easy to spoof, it is more complicated to spoof the IP
address and inferred location. It is nevertheless possible if an attacker either completely controls
the network the user connects on, or is connected to the same WiFi, or works in the same office.

3.3 Human Errors

The attacker may also exploit vulnerabilities that rely on the user not or wrongly performing some
actions or preferring to ignore security warnings. The assumption that users may not behave in
the expected way seems reasonable given that most users are not trained in computer security,
and the goal is generally to access a service rather than performing security-related actions.

3.3.1 Phishing. In our model, we capture that users may be victims of phishing attempts, i.e.,
willing to authenticate on a malicious website. For instance, an untrained, naive user may be will-
ing to click on a link in an email that redirects to a fake web site. While a phishing attack through
an e-mail may not fool a trained user, even a more experienced user may be victim to more so-
phisticated attacks, for instance if he or she connects to an attacker WiFi hotspot which asks to
login to a website to obtain free WiFi. Therefore, when we consider the phishing threat scenario we
allow the attacker to choose with whom the user will initiate the protocol. We consider phishing
as one of the simplest attacks to mount, and protocols should effectively protect users against it.

However, even though we consider that users might be victim of phishing, we suppose that they
are careful enough to avoid it when performing the most sensitive operations: These operations
include the registration of the U2F key and logging for the first time on a computer they wish
to trust later. Indeed, if we were to allow phishing to be performed during those steps, then no

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 13. Publication date: January 2021.



13:10 C. Jacomme and S. Kremer

security guarantees could ever be achieved as the use of a second-factor authentication requires a
trusted setup.

3.3.2 No Compare. A protocol may submit to the user a fingerprint and expect the user to con-
tinue the protocol only if the fingerprint corresponds to his or her own. When given a fingerprint
and a confirmation button, some users may confirm without reading the displayed information.
Thus, when considering the no compare scenario, we assume that the user does not compare any
given value and always answers yes.

3.4 Threat Scenarios Considered

In our analysis, we consider all the possible combinations of the previously presented scenarios.
This yields a fine-grained threat model that allows for a detailed comparison of the different pro-
tocols, and to identify the strengths and weaknesses of each protocol, by showing which threats
are mitigated by which mechanisms.

By considering those possibilities, we capture many real-life scenarios. For instance, when a
user connects to a WiFi hotspot in a hotel or train station, the WiFi might be controlled by the
attacker, making the fingerprint spoofing and phishing scenarios realistic, because the attacker
can have full control over the network and thus use the provided IP address or redirect a user to a
fake website.

If we try to connect on some untrusted computer, for instance the computer of a coworker, then
it may contain a rather basic malware, for instance a key-logger (M]Lrjl ?7'3 O). However, if we connect
on a computer shared by many people at some place, for instance at a cybercafe, then there could

be a very strong malware controlling the display of the computer (MgLStZ,R,W) or controlling any

TLS connection on this computer (MLL%W) Moreover, the network in this unknown place might
also be compromised, and we may have some other scenarios combined with the malware, such
as phishing (PH) or fingerprint spoofing (FS).

Our different scenarios provide different levels of granularity going from no attacker power at
all to complete control over both the network and the platform. Our threat model abstracts away
from how the attacker gained this power. Thus, the scenarios we consider will contain at some
point all the possible attacks, without the need to specify how they may be performed. Note that
we distinguish access to the RAM of the computer and access to the hard drive. For instance, a
TLS session key will only be stored in RAM and a cookie will be stored on the hard drive. A side
channel attack such as Meltdown [18] or Spectre [15] may allow the attacker to read the RAM
of the user computer. In the protocols studied in this article, all values stored inside the RAM are
received over one of the channels and not generated by the computer. Thus, in our examples the
RAM read-only access is equivalent to giving read-only access to all the interfaces of the computer
(Mgsg 0 MLL% 0 MidoifR 0 M:f% o)- Another threat scenario is pharming, where the attacker can
“lie” about the URL that is displayed to the user. This may happen either because of a malware that
edits the hosts file (on a UNIX system) or by performing DNS ID Spoofing or DNS Cache Poisoning.
All of these scenarios are simply captured as MI)L%(W

4 THE FORMAL MODEL

For our formal analysis, we model protocols in a dialect of the applied pi calculus [1, 2] that serves
as input language to the PROVERIF tool [7], which we use to automate the analysis. We will only
give a brief, informal overview here, which should be sufficient to explain our modelling of TLS
sessions and threat scenarios. We refer the reader to Reference [7] for additional details about the
formal semantics.
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M,N::= terms P,Q::= 0 null process

| a,b,c,k,m,n,s name | PO parallel

| x,y,2z variable | P replication

| f(My,...,My) constructor application |newn:T.P name restriction

| in(M,x : T).P message input

E::= expressions | in(M,= N).P pattern matching

| M name | out(M, N).P message output

| h(Ey,...,En) function application | if E; = E; then P else Q conditional

| fail failure | event e(M).P event e

Fig. 7. Terms and processes.

4.1 The Applied-pi Calculus and PROVERIF

In the applied pi-calculus, protocols are modelled as concurrent processes that communicate mes-
sages built from a typed term algebra. The attacker controls the execution of the processes and
can make computations over known terms. The grammar is given in Figure 7.

Atomic terms are either names a, b, c, n, .. ., or variables x, y, z, . . ., each declared with a type.
Pre-defined types include channel, Boolean, and bitstring, but a user may define additional types.
We note that the type system is only a convenient way to avoid errors in the specification; it does
not limit the attacker, and types are basically ignored in the semantics. We suppose a set of function
symbols, split into constructors and destructors. Each function symbol has an arity, defining the
number and types of the arguments, as well as the type of the resulting term. Terms are built by
applying constructors to other terms. Destructors are defined by one or several rewriting rules and
model the properties of function symbols. For example, we can model digital signatures as follows.
Suppose that pkey and skey are user defined types, modelling public and secret keys. Then we can
define the function constructors

pk(skey) : pkey and sign(bitstring, skey) : bitstring
as well as the destructor checksign by the following rewrite rule,
checksign(sign(m, k), pk(k)) — m.

While constructors are used to build terms, application of destructors generalizes terms to expres-
sions. Expressions may fail when a destructor is applied and the expression cannot reduce to a
term by applying the rewrite rules defining the destructors. Additionally, one may declare equa-
tions on terms, which define a congruence relation on terms that are considered equal. Hence, an
alternative way of specifying digital signatures would be to declare checksign as a constructor
together with the equation

checksign(sign(m, k), pk(k)) = m.

In contrast to the previous modelling, checksign(ty, ) is a valid term for any 1, ; and the evalu-
ation of this term will not fail. Moreover, one can define private names and function symbols that
may not be used by the attacker.

The protocols themselves are modelled by processes. 0 is the terminal process that does nothing.
P | Q runs processes P and Q in parallel, and !P allows to spawn an unbounded number of copies
of P to be run in parallel. new n : T declares a fresh name of type T; this construct is useful to
generate fresh, secret keys and nonces. in(M, x : T) inputs a term that will be bound to a variable
of type T on channel M, in(M,= N) will only continue if the term N is provided on channel
M; out(M, N) outputs the term N on channel M. If the channel name is known to (or can be
computed by) the adversary, then the channel is under the adversary’s control: Any input message
may come from the adversary, and any output is added to the adversary’s knowledge. On the
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channel a.

channel sms [private].
channel kb [private].
channel phone [private].

Server(login : bitstring, passwd : bitstring)=

in(a, x); Platform=

if x = (login, passwd) then in(kb, (xjogin : bitstring, xpagsiq : bitstring));
new code : bitstring; out(a, (Xjogin: ¥passwd);
out(sms, code); in(kb, xoq4e : bitstring);
in(a, = code); out(a, xcoge)-

event Login(login).

User(login : bitstring, passwd : bitstring)=

event Initiate(login); Mobile=
out(kb, (login, passwd)); in(sms, xco4e : bitstring);
in(phone, x.oq, : bitstring); out(phone, Xcode)-

out(kb, x¢oqe)-

new login : bitstring;new passwd : bitstring; !Server(login, passwd)|!Platform|!Mobile|!User(login, passwd))

Fig. 8. Google 2-step toy example.

contrary, if the channel is private, then the adversary can neither read from nor write to this
channel. The conditional if E; = E, then P else Q checks whether two expressions successfully
evaluate to equal terms and executes P, or Q if at least one of the expressions failed or the two
expressions yield different terms. Finally processes can be annotated by an event e(M) where e
is a user defined event. Events do not influence the process execution and serve merely as an
annotation for specifying properties.

Throughout the article, we will use some of the usual syntactic sugar and simplifications: We
generally omit the final 0 process, as well as else 0 branches, and as in PROVERIF we write in(c, =
t).P instead of in(c, x).if x = t then P else 0.

As an example, consider the processes defined in Figure 8. A user process User wants to au-
thenticate to some server Server. To do so, the user sends his or her login and password to his or
her platform that are then forwarded to the server. The Server generates a fresh code sent to the
user’s Mobile. The code is then forwarded to the user and back to the server through the platform.

In this article, we are interested in verifying authentication properties. We model them, as usual,
as correspondence properties of the form

el(tl, ey tn) - 62(141, e ,um).
Such a property holds if, in each execution, every occurrence of an instance of e;(t1,...,t,) is
preceded by the corresponding instance of ez(uy, . . ., u,). Considering the example of Figure 8,

we model the property that any accepted login was actually initiated by the user
Login(login) = Initiate(login).

This property is satisfied here, thanks to the sms channel that is private. An even stronger property
is verified, as each Login can be matched with exactly one Initiate. For such properties, we use
injective correspondence properties

er(t, ... tn) =inj €2(U1, ..., Um)

that require that each occurrence of e; is matched by a different preceding occurrence of e,.
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Server(login, passwd, idS)=

Platform(idP)= %n(a, Xclient)s . .
i in(TLS(x;jiens» idS), (= login, = passwd));
ln(kb’ (xloﬁn’xpasswwxids)); ( ( client ) ( 9 P >)

At new code;
out(TLS(idP, ids), (Xjogin> Xpasswd); out(sms, code);
I in(kb, xcoge) ; . P
ae’s in(TLS(xzjiens» 1dS), = code);
out(TLS(idP, ids), Xcode)- event Lo;lil;n(tlogin).

TLS_manager(idP, idS)=
in(a, (idc, ids));
if not(idc = idP)||not(ids = idS) then
out(a, TLS(idc, ids)).

User(login, passwd, idS)=
event Initiate(login);
out(kb, (login, passwd, idS));
in(phone, Xcoge);
out(kb, Xcode)-

new login;new passwd; new idS; new idP;
IServer(login, passwd, idS)|!Platform(idP)|'TLS_manager(idS, idP)|!Mobile|'User(login, passwd))

Fig. 9. Google 2-step toy example with TLS.

4.2 Modelling TLS Communications

Most web protocols rely on TLS to ensure the secrecy of the data exchanged between a client and
a server. To formally analyse online authentication protocols, we thus need to model TLS sessions
and corresponding attacker capabilities. A possibility would of course be to precisely model the
actual TLS protocol and use this model in our protocol analysis. This would, however, yield an
extremely complex model, which would be difficult to analyse. A more detailed model of TLS
would mostly be of interest for the analysis of TLS itself rather than the protocol that make use of
it. Therefore, for this article, we opt to model TLS at a higher level of abstraction.
In essence we model that TLS provides

e confidentiality of the communications between the client and the server, unless one of them
has been compromised by the adversary;

e a session identifier that links all messages of a given session, avoiding mixing messages
between different sessions.

We model this in the applied pi calculus as follows:

e we define a private function TLS(id, id) : channel where id is a user defined type of iden-
tities and use the channel TLS(c, s) for communications between client ¢ and server s;

e we define a TLS manager process that given as inputs two identities id; and id; outputs on
a public channel the channel name TLS(ids, id,), if either id; or id; are compromised;

e we generate a fresh name of type sid for each TLS connection and use it as a session
identifier, concatenating it to each message, and checking equality of this identifier at each
reception in a same session.

However, even if the communication is protected by TLS, we suppose that the adversary can block
or delay communications. As communications over private channels are synchronous we rewrite
each process of the form out(TLS(c, s), M).P into a process out(TLS(c, s), M)|P. This ensures that
the communications on TLS channels are indeed asynchronous. We provide the new elements of
our previous toy example in Figure 9 (we omit the types for concision).

The TLS manager essentially allows the attacker to have a valid TLS session as long as the
communication is not between the honest user and the server. This means that, even though we

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 13. Publication date: January 2021.



13:14 C. Jacomme and S. Kremer

consider a single honest user, the attacker can perform all actions corresponding to sessions in-
volving other users. Hence, in our model we consider a single honest user in parallel with an
arbitrary number of corrupted users. As the corrupted user may behave honestly, considering a
single honest user is not a limitation. Note, however, that we assume that there are no interactions
between the user’s computer and phone and the equipment of other users.

4.3 Modelling Threat Models

We will now present how we model the different scenarios discussed in Section 3 in the applied pi
calculus.

4.3.1 Malware. As discussed in Section 3.1.1, we view a system as a set of interfaces. By default,
these interfaces are defined as private channels. Let a be a public channel. A malware providing
read-only access to an interface ch is modelled by rewriting processes of the form in(ch, x).P into
processes of the form in(ch, x).out(a, x).P, respectively out(ch, M).P into out(a, M).out(ch, M).P,
depending on whether inputs or outputs are compromised. Read-write access is simply modelled
by revealing the channel name ch, which gives full control over this channel to the adversary. We
provide in Figure 10 an example where the input received on the keyboard channel kb is forwarded
to the attacker. The modified part of the process is highlighted .

4.3.2  Fingerprint and Spoofing. As discussed before, when browsing, one may extract informa-
tion about a user’s location, computer, browser and OS version, and so on. This fingerprint may be
used as an additional factor for identification, and can also be transmitted to a user for verification
of its accuracy. We model this fingerprint by adding a function fpr(id) : fingerprint that takes
an identity and returns its corresponding fingerprint. Given that all network communications are
performed over a TLS channel TLS(c,s) the server s can simply extract the fingerprint fpr(c).
However, in some cases we want to give the attacker the possibility to spoof the fingerprint, e.g.,
if the attacker controls the user’s local network. In these cases, we declare an additional function
spoofpr(fingerprint) : id and the equation

fpr(spoofep-(fpr(c))) = for(c),

which provides the attacker with an identity whose fingerprint is identical to fpr(c) and allows
the attacker to initiate a communication on a channel TLS(spoofpr(fpr(c)), s).

We show in Figure 11 an example where the User also receives from his or her phone the
fingerprint of the platform seen by the server and checks that the fingerprint does match the fin-
gerprint of his or her platform.

4.3.3  Human Errors—No Compare. Our model contains dedicated processes that represent the
expected actions of a human, e.g., initiating a login by typing on the keyboard or copying a re-
ceived code through the display interface of his or her computer or phone. A user is also as-
sumed to perform checks, such as verifying the correctness of a fingerprint or comparing two
random values, one displayed on the computer and one on the phone. In the No Compare sce-
nario, we suppose that a human does not perform these checks and simply remove them. The
corresponding process is obtained from Figure 11 by simply removing the highlighted conditional
“if fingerprint = fpr(idP) then .”

4.3.4  Human Errors—Phishing. In our model of TLS, we simply represent a URL by the server
identity idS, provided by the human user, as it was shown in Figure 9. This initiates a com-
munication between the user’s computer, with identifier idC, and the server over the channel
TLS(idC, idS). This models that the server URL is provided by the user and may be the one of a
malicious server, which his or her machine is then connecting to. We let the adversary provide the
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User(login, passwd, idP, idS)=

User(login, passwd, idP, idS)= event Initiate(login);
event Initiate(login); in(a, ida : 1d);
channel kb [private]. out(a, (login, passwd, idS)); if ida = idS then
Platform(idP : id)= in(phone, (code, fingerprint )); out(kb, (login, passwd, ida));
in(kb, (login, passwd, ids)); . o ) in(phone, (code, fingerprint));
. . if fingerprint = fpr(idP) then if fingerprint = fpr(idP) then
out(a, (login, passwd, ids)); out(a, code). out(kb, code).
Fig. 10. Key-logger example. Fig. 11. Fingerprint example. Fig. 12. Phishing example.

server identity idA to the user to model a basic phishing mechanism. We distinguish two cases: a
trained user will check that idA = idS, where idS is the correct server, while an untrained user
will omit this check and connect to the malicious server. The updated User process is provided in
Figure 12, where we highlight the line to be removed under phishing.

5 ANALYSIS AND COMPARISON

In this section, we use the formal framework to analyse several multi-factor authentication pro-
tocols. The analysis is completely automated using the PROVERIF tool. All scripts and source files
used for these analyses are available in Reference [22].

5.1 Properties and Methodology

5.1.1 Properties. We focus on authentication properties and consider that a user may perform
three different actions:

e an untrusted login: the user performs a login on an untrusted computer, i.e., without select-
ing the “trust this computer” option, using second-factor authentication;

e a trusted login: the user performs an initial login on a trusted computer and selects the “trust
this computer” option, using second-factor authentication;

e a cookie login: the user performs a login on a previously trusted computer, using his or her
password but no second factor, and identifying through a cookie and fingerprint.

For each of these actions, we check that whenever a login happens, the corresponding login was
requested by the user. We therefore define three pairs of events

(inity(id), accept (id)) x € {u,t,c}.

The init,(id) events are added to the process modelling the human user to capture the user’s
intention to perform the login action. The accept, (id) events are added to the server process. The
three properties are then modelled as three injective correspondence properties:

accept, (id) =>inj init(id) x € {u,t,c}.

When the three properties hold, we have that every login of some kind accepted by the server for
a given computer matches exactly one login of the same kind initiated by the user on the same
computer.

5.1.2  Methodology. For every protocol, we model the three different types of login and then
check using PROVERIF whether each security property holds for all possible (combinations of)
threat scenarios presented in Section 3. As we consider trusted and untrusted login, we provide the
user with two platforms: a trusted platform on which the user will try to perform trusted logins
and an untrusted platform for untrusted logins. We will thus extend the notation for malware
presented in Section 3.1.2 by prefixing the interface with t if the interface belongs to the trusted
computer, and u if it belongs to the untrusted computer. For instance, Mfﬁésé’ corresponds to a
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key-logger on the untrusted computer. A scenario is described by a list of considered threats that
may contain

e phishing;

e fingerprint spoofing;

e no comparisons by the user (NC);

e the malware that may be present on the trusted and untrusted platform.

For instance, “PH FS M[to_“RS%/ ” denotes the scenario where the attacker can perform phishing, fin-
gerprint spoofing, and has read-write access to the inputs and outputs of USB devices of the trusted
computer. “NC M::)‘,gfw Ml‘g_,,'és(a/ Mi‘;}giﬁy” models a human that does not perform comparisons
and an attacker that has read-write access to the inputs and outputs of the TLS, USB, and display
interfaces of the untrusted device.

We use a script to generate the files corresponding to all scenarios for each protocol and launch
the PROVERIF tool on the generated files. In total, we generated 6,172 scenarios that are analysed
by PROVERIF in 8 minutes on a computing server with 12 Intel Xeon CPU X5650 @ 2.67 GHz and
50Go of RAM. We note that we do not generate threat scenarios whenever properties are already
falsified for a weaker attacker (considering less threats or weaker malware). The script generates
automatically the result tables, displaying only results for minimal threat scenarios that provide
attacks, and maximal threat scenarios for which properties are guaranteed. In the following sec-
tions we present partial tables with results for particular protocols. Full results for all protocols
are given in Tables 9 and 10 in Appendix.

The result tables use the following notations:

e results are displayed as a triple ut ¢ where u, t, c are each X (violated) or v (satisfied) for
the given threat scenario; each letter in the set {u, ¢, c} gives the status of the authentication
property for untrusted login, trusted login and cookie login respectively;

e % and ¢ are shortcuts for XXX and vV /;

e signs are greyed when they are implied by other results, i.e., the attack existed for a weaker
threat model, or the property is satisfied for a stronger adversary;

e we sometimes use blue, circled symbols to emphasize differences when comparing
protocols.

Even if PROVERIF can sometimes return false attacks, we remark that any X corresponds to an
actual attack where PROVERIF was able to reconstruct the attack trace.

5.2 Google 2-step: Verification Code and One-Tap

In this section, we report on the analysis of the currently available Google 2-step protocols: the
verification code (G2V, described in Section 2.1.1), the One-Tap (20T, described in Section 2.1.2)
with and without fingerprint, and the Double-Tap (2DT'P", described in Section 2.1.3). The results
are summarized in Tables 1 and 2.

5.2.1 G2V. In the G2V protocol the user must copy a code received on his or her phone to his
or her computer to validate the login. We first show that G2V is indeed secure when only the
password of the user was revealed to the attacker: as long as the attacker cannot obtain the code,

. . . . t—usb
the protocol remains secure. If the attacker obtains the code, either using a key-logger (M, ) or

by reading the SMS interface (Mldne‘,;{ o) or any other read access to an interface on which the code
is transmitted, then the attacker can use this code to validate his or her own session. Looking at
Table 1, it may seem surprising that a malware on a trusted platform may compromise an untrusted
login. This is due to the fact that a code of a trusted session may be used to validate an untrusted
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Table 1. Analysis of the Basic Google 2-step

Protocols
Threat Scenarios G2V 20T G20TPr
v ® )
PH ®x % )
NC v 3 ® Table 2. Analysis of the
ES SR 3 Google 2-step Double-Tap
t—hdd
Mi éLR 0 A v Threat Scenarios  c2DTP"
intRO x ® @ NC @
g0 L% © rs @
whoror e -
cilgi/‘R() " “ " NC M'tflffsg’ ]
Itn—{}lzs ® % X@X FS Min_: o @
e NC M re @
FS M . //X x x NC M!J-(LIS @
Y ngo
MKLT— I(S) 7 % @ FS M'uojqu @
Mil,?it SO «® ® @ FS Min:RO @
/\A:‘i’rl:t?]io % ® XX
Mi“oj‘fsgv ® X DX
inRW

session and vice versa. Moreover, if the attacker can access the hard disk drive (Mit;fgd), then he
or she may steal the cookie that allows login without a second factor, and then perform a login if
he or she can also spoof the platform fingerprint (FS).

We have tested on the Google website that a code generated for a login request can indeed be
used (once) for any other login, demonstrating that such attacks are indeed feasible. Interestingly,
this also shows that in the actual implementation, the verification code is not linked to the TLS
session. Not linking codes to sessions is actually useful as it allows to print in advance a set of
codes, e.g., if no SMS access is available. Moreover, we note that linking the code to a session does
actually not improve security in our model, as the code of the attacker session will also be sent
to the user’s phone and could then be recovered. In practice, if the code is linked, an attack can
be produced only if the attacker’s code is received first, i.e., if the attacker can login just before or
after the user.

We remark that the results for G2V are also valid for another protocol, Google Authenticator. On
this protocol, the phone and the server share a secret key and use it to derive a one time password
(OTP) from the current time. In all the scenarios where the SMS channel is secure, G2V can be seen
as a modelling of Google Authenticator where the OTP is a random value “magically” shared by
the phone and the server.

5.2.2 G20T. In the 20T protocol a user simply confirms the login by pressing a yes/no button
on his or her phone. We first consider the version that does not display the fingerprint, and which
is still in use. Our automated analysis reports a vulnerability even if only the password has been
stolen. In this protocol, the client is informed when a second, concurrent login is requested and the
client aborts. However, if the attacker can block, or delay network messages, then a race condition
can be exploited to have the client tap yes and confirm the attacker’s login. We have been able to
reproduce this attack in practice and describe it in more detail in Section 6. While the attack is in
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our most basic threat model, it nevertheless requires that the attacker can detect a login attempt
from the user and can block network messages (as supposed in the Dolev-Yao model).

5.2.3 G20T"®". We provide in the third column of Table 1 the analysis of G20T". To highlight
the benefits of the fingerprint, we color additionally satisfied properties in blue. In many read-
only scenarios (Mit(:;IQSO’ Mitr;f/‘;(b), M]‘:,/tali), Mi“ni,;sob), and even in case of a phishing attempt, the
user sees the attacker’s fingerprint on his or her phone and does not confirm. However, if the
user does not check the values (NC) or if the attacker can spoof the fingerprint (FS), then G20 T"
simply degrades to G20T and becomes insecure. Some attacks may be performed on the cookie
login, for instance for scenarios Mlt;f/];w or MFJ“RS(%, as the attacker may initiate a login from the
user’s computer without the user having any knowledge of it, and then use it as a kind of proxy.

Because of the verification code, in scenarios FS or NC, G2V provides better guarantees than
G20T" 1t is, however, interesting to note that 20T resists to read-only access on the device
as there is no code to be leaked to the attacker. One may argue that an SMS channel provides less
confidentiality than a TLS channel, i.e., the read-access on the SMS channel may be easier to obtain
in practice. Indeed, SMS communications between the cellphone and the relay can be made with
weaker encryption (A5/0 and A5/2) than TLS, and the SMS message will anyway be sent over TLS
between the relay and the provider’s servers. While this argument is in favour of 20T™", one
may also argue that G2V has better resistance to user inattention, as a user needs to actively copy

a code.

5.2.4 G2DT"®". To palliate the weakness of G20T compared to G2V, Google proposes G2DTP"
where a comparison through a second tap is required. The additional security provided by the
second tap is displayed in Table 2. Note that as G2DT" is strictly more secure than c20T", we
only report on the differences between them, which are highlighted in blue. The attacker must
be able to have his or her code displayed and selected on the user’s device to successfully login.
Therefore, FS or NC scenarios with some additional read-only access, are secure. Interestingly, in
the NC scenario, we are now as secure as G2V, while having greater usability. We note that we are
still not secure in the PH FS scenario. This means that an attacker controlling the user’s network
or some WiFi hotspot could mount an attack against G2DT".

5.3 Additional Display

In this section, we propose and analyse small modifications of the previously presented protocols.
Given the benefits discussed in Section 5.2.3, we first add a fingerprint to G2V.

In Google 2-step, some attacks occur because the attacker is able to replace a trusted login by an
untrusted one, e.g., under M:q‘,,‘f(a, If this happens, then the attacker can obtain a session cookie
for his or her own computer and perform additional undetected logins later. A user might expect
that by using a second factor, he or she should be able to securely login once on an untrusted
computer and be assured that no additional login will be possible.

We now study a variant of each of the protocols where the user’s action (trusted or untrusted
login) is added to the display. This addition may create some harmless “attacks” where the attacker
replaces a trusted login with an untrusted login. However, such attacks indicate that an attacker
may change the type of action, such as password reset, or disabling second-factor authentication.

We call G2V?P" the protocol version that additionally displays the fingerprint and c2V¥s,
G20T%, and G2DTY® the versions that additionally display fingerprint, respectively the action,
and provide in Table 3 the results of our analysis. To highlight the benefits of our modifications,
we color additionally satisfied properties in blue, when considering G2V and 62V, c2VP" and
G2Viis 20T and 620T9S, and c2DT™" and c2D T,
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Table 3. Google 2-step Protocols with Additional Display
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It appears that adding the action—and the fingerprint in the G2V case—performs as expected:
The protocols become secure in all the scenarios where the only possible attack was a mixing of

actions.

5.4 Conclusion Regarding Google 2-step

Currently, Google proposes G2V, 20T, 20T, and c2DT™". Adding the type of login being
performed (trusted or untrusted) to the display would provide additional security guarantees.
Among the studied mechanisms, G2V%"s and 62DT® provide the best security guarantees in our
model, having each advantages and disadvantages. In Table 4, we provide a comparison between
these two mechanisms. We observe that G2V performs better than 62DT* only in scenarios

where we have Mt~dis

io:RW?

which may be considered as a powerful malware.
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Table 4. Comparison of Google 2-step with

C. Jacomme and S. Kremer
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62DTYs provides better guarantees in many simpler threat scenarios, with for instance read-
only access to the phone. As the code is sent back to the server from the phone rather than the
computer, this mechanism is more resilient to malware on the computer. Moreover, the code is
sent through a TLS channel rather than via SMS, which may arguably provide better security.

Finally, even though Google 2-step may significantly improve security, phishing attacks com-
bined with fingerprint spoofing are difficult to prevent. This seems to be inherent to the kind of
protocol, where the security is only enforced through the second factor. As we will see in the next
section the FIDO U2F protocol may provide better guarantees for these threat scenarios.

5.5 FIDO U2F

FIDO’s U2F adds cryptographic capabilities to the mechanism through its registration mechanism.
As explained previously, the URL of the server the user is trying to authenticate to is included in
the query made to the FIDO USB token, and also in the signature returned by the token. The server
will then only grant login if the signature contains his or her own URL.

We present the results of our formal analysis in Table 5. U2F is secure under many threat sce-
narios, including some that combine phishing and fingerprint spoofing. However, an attack is
found when the computer runs malware that controls the USB interface of the trusted computer

(M};;‘;&,) Indeed, the malware can then communicate with the U2F token and thus send a request
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Table 6. Results for the TokeENBINDING Extension

Threat Scenarios U2F  U2Fyp  c2DTY  c2DTd®
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—tls
0:RW

M:)‘,}elfw), then he or she may change the intended action and replace an untrusted login with a
trusted one. As a consequence, a login on an untrusted computer with U2F may enable future at-
tacker logins on this computer. This contradicts claims that Yubikeys (an implementation of U2F
token) guarantee protection against “phishing, session hijacking, man-in-the-middle, and malware
attacks.” While the claim indeed holds for the first threats, malware attacks are still possible. More-
over, one might expect an external hardware token to allow users to securely log on an untrusted
computer. However, this enables an attacker to submit his or her own request to the user’s token.
Even though a user has to press the token button to accept each request, as noted previously, a
malware controlling the TLS connection will allow several attacker logins for one user press due
to the “trust this computer” mechanism.

U2F may lead to another problem that is out of the scope of our analysis: a Yubikey does not
have any way to provide feedback for a successful press. When the computer submits two requests
in a row to the token and the user just presses once, the user may believe that the press failed, and
press once more. This is reminiscent of the problem identified during the analysis of the One-Tap
mechanism: success and failure of the second factor should not be silent.

To summarize, one might expect U2F to protect against malware, as it is based on a secure hard-
ware token providing cryptographic capabilities. Thus, even if U2F does provide a better security
than most existing solutions, it does not uphold this promise completely. However, the U2F mech-
anism providing protection against phishing is very interesting. What appears to be lacking from
U2F is some feedback capabilities, i.e a screen, to notify failures, successes, and maybe information
such as the fingerprint of the computer.

generated for an attacker session. Also, if the attacker can control the TLS interface (/\/Ii or

5.6 Token Binding

We previously studied the security of the protocols combined with the “trust this computer” mech-
anism where a cookie is used to authenticate a computer on the long term. We provide in Table 6
the results of the formal analysis of TOKENBINDING combined with U2F and ¢2DT%* and high-
light in blue the security gained with respect to the classical cookie version. It provides protection
against a read-only access to the TLS interface, because it is not any more sufficient to steal the
cookie. We do not gain protection against control of the computer memory, as the secret key is
stored the same way as the cookie. The attacker needs to be able to access the private key of the
user that was generated on his or her platform but never sent over the network.
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USER COMPUTER MOBILE SERVER

FTFEE

Successful G20TP" login

sh(sid, URL)
sh(sid| URL)

sh(sid, URL)

check sid, URL

Fig. 13. c2DT®! outline.

5.7 A ¢2DT9s Extension: G2DTe*t

5.7.1 Core Idea. We propose an extension of G2DT* based on ideas from U2F. Our goal is to
provide a protocol that will have the same user experience as G2DT9* but will provide a stronger
protection against phishing by using the second factor to confirm the origin and the TLS session
id.

To protect against phishing, the URL seen by the user must be authenticated. This requires an
external intervention. For instance, in U2F the browser extracts the URL and sends it to the token.
With a phone serving as a second factor, we may mimic this behavior by having the browser
transmit the URL to the phone through some secure channel. The phone can then transmit the
URL to the server on an independent channel, allowing the server to check that the URL seen by
the user corresponds to his or her own URL. This, however, requires an efficient way to transmit
data from the computer to the phone, ideally without any particular setup. NFC like technologies
may provide a promising means for such a channel. Without this channel the selection mechanism
of 62DT" may be used: To verify that a user has seen some data on his or her computer the phone
displays the data among other random data and asks the user to select the correct one.

Of course, an efficient and easy to deploy channel would be preferable to the selection mecha-
nism. Yet, the selection mechanism of c2DT%* allows for a protocol with the same user experience:
rather easy to deploy but with greater security.

5.7.2  Extension Description. The extension is similar to 62D T4, except that the server does not
send a freshly generated digit to the computer. The user’s browser extracts the URL and the TLS
session identifier and produces a short hash of those values that is displayed in a pop-up outside
the web page. The server computes the same hash and sends it to the phone. The phone displays
the hash among two other random values. If the user selects the correct value, then the phone
confirms the login to the server.

Intuitively, instead of using a signature to transmit securely the URL and the TLS session iden-
tifier, the protocol relies on a confirmation on the user’s phone. The outline of the protocol is
displayed in Figure 13.

Currently, c2DT9* uses only a two-digit integer. Hence, an attacker has probability 1/100 to
guess the integer, which is much higher than usually accepted. If in G2DT® we were to use two-
digit hash values, then an attacker could easily find collisions. To maintain usability and improve
the security by transmitting more information, it might be worth exploring different mechanisms,
such as using images or visual hashes. The only conditions are that the domain should be large,
and a human should be able to instantly pick the correct value out of the three proposals.
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Table 7. Comparison between 62DTYs and caDTeXt Table 8. Comparison between U2F and
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5.8 G2DT®! Analysis

In Table 7, we provide the advantages of G2DT®! when compared to G2DT9*, where we highlight
the newly secure cases in blue. We ensure higher security guarantees in some common scenarios
such as phishing combined with a distracted user who does not compare values. This means that
G2DT® can be used to effectively protect untrained people against phishing. Moreover, it is also
secure in the case of phishing and fingerprint spoofing. Hence, the protocol provides secure login
even when connecting on an untrusted network. The comparison between U2F and G2DT®" is
displayed in Table 8, where we highlight differences in blue. We do not display the device malware
scenarios, that are not relevant for U2F, but in which case it naturally provides better security. To
summarize, U2F is more secure against an attacker who can manipulate the display of the com-
puter, or of course the phone itself. G2DT®" is more secure against an attacker who can manipulate
the USB ports of the computer or the network. It is difficult to say which protocol provides the
best security as it depends on more practical considerations, which we discuss in the Section 7.1.

6 VALIDATING ATTACKS IN PRACTICE

We provide below a more practical description of a few selected types of attacks and weaknesses.
Demonstrating that these attacks can be put in practice, albeit in laboratory conditions, validates
our protocol and attacker models. Some of these attacks were found with PROVERIF, while others
were discovered during the reverse engineering of the protocols. We do not claim novelty of those
attacks, which are not particularly complex. We provide for each type of attacks
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o the outline of the required steps of the attacks,

e high-level comments about the severity of the attacks and an understanding of how they
work and why they are possible;

e a description of how the attack was validated inside a lab environment that explains how
exactly those attacks might be performed, by whom, and what are the required capabilities.

Each attack was reproduced inside a laboratory setting with laptops and an internet connection,
using a dedicated Google account for the 20T attacks, and the first version of the “Security Keys
series by Yubico” along with an open source API? for the FIDO attacks. Remark that some of the
following weaknesses might also be combined into stronger attacks.

6.1 Session Confusion on G2V

Outline. The different steps of the attack are as follows:

(1) The user enters his or her email and password, initiating a user session;

(2) the browser informs the user that a code will be received on his or her phone;

(3) the attacker enters the user’s login and password on another computer, initiating an at-
tacker session;

(4) the attacker intercepts the code intended for the user session;

(5) the attacker uses the code of the user session to validate the attacker session.

Comments. The fact that the code generated to validate the user session can be used to validate
the attacker session may be surprising. It implies that the attacker does not need to intercept the
code intended for his or her own session, but can use the code of any user session. This is an
important observation: If the attacker uses for instance a key-logger, then the code that the user
enters on his or her computer is the first one received, which is most likely the code for the first
session, i.e., the user session. If the codes were linked to the sessions on the server side, then the
code entered on his or her computer by the user would be useless to the attacker. We also remark
that, as previously mentioned, the SMS channel might not provide a high level of security, at least
compared to TLS. Hence, it might be possible for an attacker to obtain the verification code through
a weakness of the SMS channel. This weakness does not directly lead to a severe attack but it may
facilitate performing some of the following attacks.

Attack Validation. We created a fresh Google account and enabled the second-factor authenti-
cation by associating a previously unregistered phone. Using two distinct computers, we initiated
a first login attempt on the first one and received a first code. We then initiated a second session
on the second computer and received a second code. The second code was then used to validate
the first session and conversely. This confirms that the code sent is not linked to a specific login
attempt.

6.2 Session Confusion on c20T
Outline. The different steps of the attack are as follows:

(1) the user enters his or her password and email, initiating a user session;

(2) the browser displays a request to confirm the request on his or her phone;

(3) the attacker detects that the user contacted the server. After the first reply from the server
the attacker blocks all further messages;

Zhttps://github.com/Yubico/libu2f-server.
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(4) the attacker enters the user’s login and password on another computer, initiating an at-
tacker session;
(5) depending on the timing, two things may then happen:
o the user presses yes, nothing happens on his or her screen, and the attacker is logged
in;
e or the user presses yes, nothing happens on his or her screen, but another yes/no pops
up on his or her phone. If the user presses yes once more, then the attacker is logged in.

Comments. A robustimplementation should reject any kind of simultaneous login from different
sessions or at least display it clearly on the phone, as it is done in the browser. We believe it to
be plausible that users, after having pressed yes on his or her phone without a successful login,
would press yes a second time. This attacks relies inherently on a lack of feedback given to the
user, and a lack of a strong link between the computer that starts the session and the phone that
validates it. This attack is concerning because of its simplicity. Google is implementing G2OT'P",
but 20T is still deployed on older mobile phones. It might be advisable to disable 20T entirely.

Attack Validation. This attack was easy to reproduce in practice as it does not involve any com-
plex manipulation. Using again a dedicated Google account, we

(1) initiated two sessions for the same user on two distinct computers,

(2) disconnected one computer from the network to reflect that the attacker blocks the net-
work, and

(3) validated the session of the other computer on the phone.

Sometimes we had to confirm twice on the phone to validate the malicious session and some-
times only once. In a basic version of this attack, which does not require to block the network, an
attacker observing the target user could initiate a session just a few moments after the user, and be
logged in when the target validates on his or her phone. The target would see an error of the type
“Something went wrong” on his or her computer and might retry to login. However, the error mes-
sage may appear before the user validates, as it appears as soon as a simultaneous login attempt
is made. Thus, the more evolved version of this attack implies to block the Internet connection
of the target computer after the user started his or her login. In our experiment, we simply tem-
porarily disabled in step (2) the WiFi connection of the computer to disconnect the computer from
the network. This effectively models an attacker that has the control over the network. Indeed, if
the attacker controls the network, the attacker can detect all connections to the server IP address,
and block all but the first connections through a firewall rule (although we did not implement the
experiment detecting automatically the connection).

6.3 Phishing Attack on Google 2-step
Outline. The different steps of the attack are as follows:

(1) the attacker directs the user to some malicious web page;

(2) the attacker initiates a login attempt with the server, and the malicious web page simply
forwards every information and query from the login attempt to the user through the
malicious web page.

Comments. In Reference [8], G2V was deemed secure with respect to phishing, because they
only considered passive phishing, where the attacker cannot for instance forward the query of the
verification code to the user. We believe that it is necessary to consider active phishing as it is a
reasonable capability nowadays. This kind of attack can be performed on a large scale without tar-
geting a specific user. We argue that second-factor authentication should efficiently protect against
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phishing, and even phishing combined with fingerprint spoofing, which are likely scenarios under
which a user may wish to perform a secure login. Ideally, a second factor should even provide
protection against this attack for a completely untrained human only following basic instructions.

Attack Validation. The core of this phishing attack is a man-in-the-middle attack. Interestingly,
the interception can be completely invisible for the user. In our different examples, we will consider
a user who wishes to login on google.com. Several user behaviors may be problematic when dealing

with phishing:

o the user follows any untrusted link close enough to the authentic one, e.g., google-
security.com;

e the user ignores an HTTPS warning;

o the user does not check that the protocol is HTTPS but accepts HTTP.

We believe that most untrained users may be victims of the first two, and that even trained users
do not always check that they are protected by HTTPS before providing his or her credentials. De-
pending on the attacker capabilities, many different kinds of phishing attacks might be performed,
some of them difficult to avoid even for experienced users.

The most basic phishing attack is to get the user to click on a malicious link that is close to the
official one. It can be performed for instance through a mail that invites the user to login on google-
security.com to solve some security issue. Here, the attacker may have obtained a valid certificate
for the malicious domain, and the user will see a valid HTTPS connection.

Suppose we connect to a malicious WiFi Network. Different kinds of attacks can be performed.
First, the malicious network may act as a free WiFi Hotspot network that requires third-party
authentication. Changing the DNS, for instance to contain the line “google.com IN A 192.168.0.1,”
the google.com domain will be redirected to an IP address controlled by the attacker. This may or
may not raise an HTTPS error depending on the state of the cache of the user’s browser. More
precisely, as most websites, http://google.com contains a 301 redirect code to https://google.com.
This redirection is cached by the browser according to the headers, which contain “Cache-Control:
max-age=2592000." This means that the 301 redirect from HTTP to HTTPS is cached by the user
browser for 2,592,000 s, i.e., 30 days. If the cache is still valid when the user connects to google.com,
then his or her browser remembers the 301 and connects to https://google.com. As the attacker
cannot provide a valid TLS certificate the user sees an HTTPS warning, that the user may choose to
ignore. If the cache has expired, which happens once every month, then the user connects through
HTTP to the malicious server, and believes to be on google.com without any warning displayed.
If the user does not check for HTTPS, then the phishing attempt succeeds.

To confirm this behavior, we forced the DNS client of a Linux machine to resolve the URL
“google.com” to a local IP address (editing the /etc/hosts files). Then, when trying to connect to
“http://google.com” in a completely fresh browser session, a local dummy page was displayed
without any warning. In a browser session that was used previously to visit the honest Google
website in the past 30 days, we obtained the HTTPS warning as the browser remembered the 301
redirect code.

We can design an even stronger attack, by setting up the WiFi network as a network that requires
authentication through a captive portal. This is a feature classically supported by most access
points, which can be provided with an URL or an IP address to which all users who try to login
should be redirected. When performing an actual test for instance on Firefox, the browser detects
that we are on a network that requires authentication, and proposes in a pop-up to redirect us to
the captive portal. Even a trained user is likely to follow the link to have an Internet connection.
The attacker can then redirect the user to a link of his or her choice: The attacker may redirect
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the user to https://google-security.com with a valid HTTPS certificate or redirect through basic
HTTP to a subdomain of google.com that does not exist, for instance api.login.google.com, and
reconfigure the DNS as previously. As the subdomain does not exist, the attacker is ensured that
the user’s browser does not have any cached 301 redirection for this site. The user then connects
to the attacker server via HTTP on a seemingly legitimate URL. Using a DNS redirection such that
all websites are resolved to the captive portal (this is a classical implementation of captive portals
for WiFi hotspots), we were able to redirect the user to an arbitrary page, containing any arbitrary
link, notably to a fake google page. The fake page corresponding to http://api.login.google.com was
successfully displayed without warning. To complete the attack with https://google-security.com,
we would need to register a TLS certificate for this domain. This could have be done for instance
using the “Let’s encrypt” certification system, although we did not perform this registration.

Some attacks could be avoided or at least complicated through the use of DNSSEC (which en-
forces a signature validation system for DNS requests) or HSTS (which declares that some website
should only be accessed through HTTPS), but this is not supported by most websites, including
google.com.

The phishing attacks can be made perfect (the user sees google.com under HTTPS but is con-
nected to the attacker server) if the attacker can install a malicious HTTPS certificate on the user
computer. On a computer running a Debian Linux distribution with libnss3-tools installed, this
was achieved through the command certutil -d sql:$ HOME/.pki/nssdb -A -t TC -n “mitm” -i mali-
cious_cert.pem. We then successfully reproduced a valid HT'TPS connection over a malicious server
by using the mitmproxy tool on Linux that allows to intercept all connections and mimic the be-
havior of a man-in-the-middle.

6.4 Action Confusion and Mixing on Google 2-step and U2F
Outline. The different steps of the attack are as follows:

(1) the user initiates an untrusted login;
(2) the attacker transforms the untrusted login into a trusted one;
(3) the attacker uses the acquired cookie to perform other logins;

or

—~
—_
~

the user initiates an untrusted login;

the attacker initiates a trusted login;

the attacker uses the multi-factor actions made for the untrusted login to validate his or
her session.

—_~ o~
[SSILS)
~— ~—

Comments. Using multi-factor authentication, a user may expect that after a successful login,
once the user has disconnected from the computer, even an attacker with full control over the
malicious computer should not be able to perform other logins. If the attacker can obtain a cookie
through transforming an untrusted login into a trusted login, then this property is violated. Note
that this change may be completely invisible to the user, and hence the user may not check the list
of trusted devices in the preferences of his or her account.

The core of this attack is an action confusion, where an intended action, the untrusted login,
is transformed into another action, a trusted login. Another instance of action confusion occurs
when a verification code intended for a login attempt is used by the attacker to reset the user’s
password. Note that every SMS from Google has the same content, independent of the action
type. We recommend the SMS or the display of the second factor to provide the user with the
intended action that is currently being validated. Untrusted login, Trusted login, Password Reset
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and deactivation of Multi-factor authentication are sensitive actions that should require multi-
factor authentication and not be confusable.

This is particularly complicated for U2F, which does not provide the user with feedback through
the second factor.

Attacker Validation. We were able to perform several sequences of actions that can lead to action
confusion.

First, after a successful second-factor login, multi factor parameters of the account can be ac-
cessed by only retyping the password. Hence, the second-factor protection can be disabled. Al-
though an e-mail is sent to notify the user about this change, as the attacker is already logged
in, the attacker can simply delete the e-mail. Once the second-factor protection is disabled, the
attacker can login from any untrusted computer. This is not per se an action confusion, but we
note that a code intended for a login also allows an attacker to change the authentication settings
of the user.

Second, many browser extensions, e.g., Greasemonkey or TamperMonkey, allow the behavior of
specific pages to be changed. On the Google login page, we were able thanks to a five line JavaScript
code to hide the ‘T trust this computer” check-box by adding the attribute style= “visibility:hidden;”
to its “div.” As the box is checked by default, we performed a login with a second factor enabled
where the box was invisible. The platform then became trusted, and we were able to perform a
second login where only the password was required, and the second factor was not asked.

Third, we recall that a login validation and a password reset action yield the same SMS. By
initiating simultaneously a login attempt and a password reset, we receive two similar SMS. An
attacker may thus initiate a password reset while the user is trying to log into his or her account.
The user will receive the code for the password reset, that the attacker may intercept, e.g., using a
key-logger, and change the user’s password. We reproduced those attacks using a dedicated Google
account and a phone as a second factor.

6.5 USB Attack on U2F
Outline. The different steps of the attack are as follows:

(1) the user initiates a login;

(2) the attacker initiates another login;

(3) the attacker sends to the token the payload corresponding to his or her session;
(4) the attacker sends to the token the payload corresponding to the user session;
(5) the user presses once the button of the token;

(6) the attacker get backs the signed data and completes his or her login;

(7) after the first press, the token keeps blinking without any change;

(8) the user presses again, and validates his or her session.

Comments. This weakness is inherent to the fact that the U2F factor does not provide feedback
to the user. Therefore, the user is unable to know which action is actually validated when pressing
the token button. Moreover, when submitted two queries in a row, the token will simply keep
blinking after the first press. Given that at least some tokens have touch buttons (and not a press
button) the user may have the impression that the press was unsuccessful.

The weakness is also related to the fact that U2F does not have an independent communication
channel with the server, and cannot provide any security when plugged into a malicious computer.
We believe, however, that providing a secure one time only login on a malicious computer is a
reasonable user expectation.
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Attack Validation. We performed our tests on the Yubikey U2F FIDO security key, which is
equipped with a touch button. Using an open source APL® we were able to submit two simul-
taneous signature requests to the token, in a similar way that the requests are submitted by the
browser. The token then started blinking as usual, expecting a user touch to confirm the signature.
After touching once the button, it kept blinking as if the press were unsuccessful. Pressing once
again, we received both signatures through the API. Hence, we could implement a malware that
would detect an honest request and would submit a second request at the same time. Then, the
user may press once, believe that the press was not registered and thus press once again, thus
validating without his or her consent for the two requests. This problem could be avoided by for-
bidding two simultaneous requests, and simply dropping any request as long as the current one is
not validated.

7 GOOGLE 2-STEP VS U2F
7.1 Practical Considerations

As mentioned previously, there are some interesting aspects that are outside of the scope of our
threat models and formal analysis. We therefore discuss below some additional thoughts and
findings.

Independence of the second factor. When trying to log into an account from a compromised
computer, we observed that the U2F token might be used by the attacker if the attacker controls
the channel used for communication with the second factor. Therefore, the U2F approach cannot
provide strong protection against malware on the user computer. The risk is mitigated by the fact
that the attacker may only perform a single action authenticated by the second factor, but if this
action can be used to deactivate the second factor, or reset the user password, the user account
may be completely compromised by this single action. The approach of Google 2-step provides a
second communication channel that is independent from the computer and may enable security
even on a completely untrusted computer.

On the need for feedback. An advantage of the phone over the U2F token is the feedback provided
to the user. In particular, on FIDO’s U2F, two consecutive button presses may remain unnoticed. On
the phone, a success or failure confirmation after pressing the button is easily provided. Moreover,
the phone can be used to produce improved versions of U2F, where the display is enriched with
additional information, as we did for G2DT%s. We note that FIDO proposes the “secure transaction”
mechanism, which specifies that second factors might use a display. However, the message content
is not included in the standardization.

Storing the keys on a dedicated secure token. An advantage of the U2F token is that, even if a
computer is compromised, the number of attacker logins is limited by the number of times the
button is pressed. This is due to the fact that keys are stored on a token and not completely com-
promised. If keys are stored on a computer or a smartphone, then a malware may extract them. As
discussed previously, U2F does not provide perfect security either. Although keys are more diffi-
cult to compromise, one should be careful about how the token is used to ensure that no unwanted
computer becomes trusted, or that a user does not press the button twice in a row. A solution to
mitigate key leakage for computers or smartphones could be to consider an Isolated Execution
Environment, such as Intel SGX, ARM TrustZone, or a Trusted Platform Module.

Carrying additional authenticators. An important aspect of multi-factor protocols is of course
usability. From that point of view, the need to buy and carry an additional token may be

Shttps://github.com/Yubico/libu2f-server.
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cumbersome. Nowadays, more and more people possess and constantly carry his or her phone,
making it a natural choice for a second factor.

Disabling the second factor. On some websites, for instance GitHub, disabling the second factor
(and then changing the password) does not require the use of the second factor, once a login was
performed. It seems advisable to require a second-factor authentication to disable the mechanism.

7.2 Final Comparison

It is difficult to compare the two approaches, which are quite different. We try to provide a brief
summary of the main advantages of both (we consider here U2F with a dedicated USB token):

o Google 2-step provides an independent channel of communication with the server, and feed-
back through the display;

Google 2-step may be compromised by malware on the phone;

U2F may provide privacy, if used correctly;

U2F may suffer from key leakage or device cloning;

U2F requires an additional device;

U2F does not provide enough feedback.

If we consider U2F where the phone is used as the dedicated token to store the keys and perform
the cryptographic operations, then U2F may provide enough feedback to the user (fingerprint,
trusted login attempt,...) and would not require carrying another device. We would, however,
potentially lose the privacy, the key storage would need to be completely secured and isolated, it
could be a victim of malware, and we need a convenient mechanism to set up a channel between
a phone and a computer.

Against both versions of U2F, Google 2-step provides better security against some critical scenar-
ios (connection to a dishonest network or on a corrupted computer). Yet, Google 2-step is currently
unable to provide unlinkability.

8 CONCLUSION

In this article, we propose a detailed threat model for multi-factor authentication protocols. It
takes into account communication through TLS channels in an abstract way, yet modelling inter-
esting details such as session identifiers and TLS sessions with compromised agents. Moreover,
we consider different levels of malware in a systematic way by representing a system as a set of
interfaces with access rights. Additionally, we allow the adversary to perform phishing and spoof
fingerprints, and consider scenarios where a careless user does not perform expected checks. We
formalize this model in the applied pi calculus and use the PROVERIF tool to systematically and au-
tomatically analyse several versions of Google 2-step and U2F in an extensive way, considering all
combinations of threats. The resulting protocol comparison highlights strengths and weaknesses
of the different mechanisms and allows us to propose some simple variants, adding actions to the
displayed information or linking the URL to the payload, which improves security. Finally, we
validate our models and findings by demonstrating the feasibility of several attacks, in laboratory
conditions.

As a direction for future work, it would be interesting to perform an in depth analysis of U2F
[11] and the FIDO2 [6], also known as WebAuthn, standards, using our fully mechanized approach.

As another direction, we consider the use of enclaves in trusted execution environments: such
environments could provide execution certification and a way to enable secure login on a com-
pletely untrusted computer, if the computer is equipped with a trusted module. One could then use
a phone as a U2F token assuming that we also have an efficient way to establish a channel between
the computer and the phone to pass the payload. The U2F keys could be stored on the phone, and
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the next natural step would be to merge G2DT® and U2F by performing a U2F on the phone in
parallel of the G2DT9. The user would only see the G2DT%* part, which would even be simplified
without the double tap, because thanks to the channel between the phone and the computer, there
would not be any need to ask the user to select the correct random. c2DT%* combined with for
instance the storage of the keys using a trusted execution environment, such as TrustZone would
then palliate the issue of keys being revealed due to malware on the phone.

APPENDIX
A  GLOBAL RESULTS

We summarize in Tables 9, 10, and 11 all the results we computed using the automated generation
of scenarios, the captions being given in Figure 14. The results were obtained in 8 minutes of
computing on a server with 12 Intel Xeon CPU X5650 @ 2.67 GHz and 50 Gb of RAM. During the

Table 9. Global Results for Malware on Trusted Platform Part 1

Threat Scenarios g2v g2VFPR  g2VD  g2ST  g2STFPR  g2STD  g2DTFPR  g2DTD  g2DTDE U2F TB-U2F  TB-g2DTD
v v v *® v v v v v v v v
PH *® v Wk v v v 4 v % v SIY
NC v v v 3 x 3 v v v v v v
ES v v v ® ® *® v v v % v v
PH NC 3 x x® x x x x x 1224 % v x
PH NC ME s, x x x® x 3 x® x 3 x® A% 3
PH FS 3 x X x * 3 x X v v v X/
PH FS M{;,"%g" ® ® XX ® ® ® ® XX V- VX 223 XX
PH FS MR x x x ® x x x® 1% 22 122 v X
PH TS M 3 ® * 3 3 3 3 X v v v X
PH FS NC Mi'"’:"“"o"1 ® x x % x x ® ® VY- VX K ®
PH FS NC Mg x 3 3 x x ® ® x 2 2 B x
PH FS Mi‘r;,’gf’-‘j)',‘ ® ® xx ® ® ® ® XX X 2 X XX
PH FS MEte Mt mem x x x * x x x x/- WK WK VK b%3
PH FS Mi;%" x® ® xvoo% * * ® ® /XX v v ®
PH FS NC e ® 3 *® 3 ® 3 3 3 I K IVX ®
PH FS M]‘;;;g ML mem ® x 3 x x ® x XX % VX X XX
PH FS IR * ® x *® * x * ® VX ® ® XX-
PH FS NC MI'(;;LSO Mi‘n’;g“ x ® ® x x ® x x 23 X 23 x
PH FS =ty 3 3 *® 3 3 x® x x v 224 v 3
PH FS ® ® XX x ® ® *® x® VXX X IVX ®
PH FS x 3 ® 3 ® ® ® XX VX 22 S XX
PH FS *® ® ® *® ® ® *® ® /XX K I x
PH FS ® 3 x® 3 3 3 x x % 3 x 3
PH FS NC x ® x ® ® ® *® *® x VK IV *®
PH FS x 3 3 x 3 ® 3 3 XX W I 3
PH FS *® ® ® *® ® ® x® x® 2z ® *® *®
PH FS x® 3 *® 3 3 x® 3 3 2 K IVX x
PH FS x ® ® ® ® ® *® x 23 ® *® *®
PH FS ® 3 ® 3 ® 3 3 ® VX 122 v 3
PH FS *® ® ® *® ® ® *® x /XX X IVX x
PH FS 3 3 *® x x x® x 3 XX 2 S 4 ®
PH FS x ® x x ® ® *® *® 273 * ® ®
PH FS L0, x 3 3 x 3 x 3 ® 24 ® 3 3
PH FS MI‘;;*;,“]V Mi‘r;%f)"‘ x ® ® x ® ® x x X ® x x
PH FS Mi‘;;;,“’v ML x ® % x x x x x X ® ® x
PHES Mgy Mooy * * x % ® x x x VXX x x %
Mi'i;;‘{‘eo'“ AV VA 22 v A2 2 A2 A AT A
o *® ® x® ® v v v v v - v
MEde v v v 3 224 4 4 4 ST v v 24
M x 27 224 v v v v v v v
MEEs x v v ® v v v v v v v v
NC ML x ® x x x ® 24 2% 2% v v v
NC Mj;‘;;o x® * *® 3 3 3 4 v v v v 24
Mo ® ® ® ® ® ® ® ® x ® ® ®
Mgf%’z ® x ® ® v v v v v x x v
MLy ® XK IIK % XX 2 XX s 2 x XX- 3
NC ME s, N AR A VA 3 x® 3 3 *® v v 3
NC ME ® x x x x ® XXX XXX 7z x XX Xxx
NC M, ® * x ® ® x * * v 1224 v ®
Ml‘;"‘w M e x X/X 2 x XX 2 X/X VX 2 x XXX VX
M Mt * XX 23 XX VX XX 2 VX x XXX I
NC Mi‘;;és,w Mi‘;;gcom 3 ® ® 3 ® ® ® x VX ® x x
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Table 10. Global Results for Malware on Trusted Platform, Part 2

g2STFPR

>
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\xxxx;\(

13:32
Threat Scenarios g2V g2VFPR  g2VD  gaST
MEes MRS, x I 2
NC Mi‘(;;’{,ﬁv MESS ® 3 x x
NC ME e Mo x * x x
NC Mi‘;;jg I‘z“'fw x 3 * *
N M MChL ok x ok x
M x v %
NC My ® x x® x
FS M men K IK WK ®
FS M;;;gg x x VXX %
FS M5 x ® /XX x
FS NC M ® x x x
FS MR 272 3% S 4 ®
FS Mt MR ® * VXX *
FS i A4 v x
S MEE Al mem x x VXX %
S M x ® VXX %
FS NC MUt ML mem x ® x x
FS NC x ® ® ®
S ® x VKK %
FS NC x * ® x
S VUK WK K %
S ® ® IZ 3
S x x VKK %
S x * VXK %
S * ® IZ 3
FS NC 27 S S
S x ® VKK %
FS NC x * ® x
FS NC x * * x
FS ® ® IZ 3
FS NC AL ey MRS ® * * ®
B My Mo Mome x x v
S NC Mk M x *® x x
FS ® ® 12 3
S ® x VKK %
FS NC x * ® x
FS NC x * * x
S ® ® VXX %
S ® x VKK %
S x ® VKK %
S * x VXK %
FS NC x * ® ®
S NC * ® ® ®
S x ® VXK %
Protocols
® G2V- Google 2-step with Verification code
o G2VP'- G2V with fingerprint display
o G2vdis- G2V with action display
e G20T- Google 2-step One Tap
o G20TP"- G20T with fingerprint display
Scenarios:

NC- No Compare, the human does not compare values
FS- Fingerprint spoof, the attacker can copy the user IP address

e PH- The user might be victim of phishing only on trusted everyday

connections or untrusted computers

Notations:

V- Property satisfied (Vif all three)
X- Attack found (%if all three)
X- Attack also present in a weaker scenario

g2STD  g2DTFPR  g2DTD  g2DTDE U2F TB-U2F  TB-g2DTD
X XX X X ® XXX X
® ® ® ® 544 v ®
® ® ® X ® x® x
® x x ® 244 44 ®
x x x X x x x
v v 44 v ® x® 44
x x x L4 x ® x
® K K V- X K 2
® V- V- VX X v (4
® 44 v v v v v
® V- V- X 42 v 444
® X X 423 42 X X
® V- V- VX X X X
® ® VXX VXX v v VXX
® X VX V- 42 X X
x XXX VXX 423 ® XXX v X-
x V- V- VX X X 2
x X X 44 X X X
® ® VXX v v v VXX
® ® x® X ® x® ®
® ® VXX VXX X 2 VXX
® X X 42 X X X
® x VXX VXX X v VXX
® ® VXX 423 ® x VXX
® x VXX VXX v v VXX
® x ® ® X X x
® ® VXX X 42 X VXX
x X X X X X X
x x x x X 44 ®
® x VXX X X v VXX
® ® ® X X X x®
® ® VXX VXX 423 X VXX
® ® ® VX X v x
® x VXX VXX X X VXX
® ® VXX VXX ® x® VXX
® ® ® ® X 2 ®
® ® ® ® X K x
® ® VXX X ® ® VXX
® ® VXX v ® x VXX
® ® VXX 423 ® ® VXX
® ® VXX X ® x VXX
® ® ® X ® ® ®
® ® x 423 ® x x
® ® VXX VXX ® ® VXX

620T%5- 620T with action display

G2DT™"- Google 2-step Double Tap (random to compare)
G2DT9- 62DTP" with action display

U2F- FIDO’s U2F

U2F,p,- TokENBINDING U2F

GZDT%‘— TokENBINDING G2D T4

M":t“;rc(cafeom aceo- The interface inputs are given to the attacker
with access level accl, and acc2 for the outputs

/- Property also satisfied in a stronger scenario
- - Either scenario not pertinent, or failure to reconstruct attack
trace

Fig. 14. Caption for global results.
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PH
PH

Table 11. Global Results for Malwares on Untrusted Platform

Threat Scenarios ‘ g2V g2VFPR  g2VD  g2ST  g2STFPR  g2STD  g2DTFPR  g2DTD  g2DTDE U2F TB-U2F  TB-g2DTD

NC M;j%;;, ® ® *® ® *® ® ® x ® v v ®
FS Mit,&@g, ® ® X ® ® ® ® X X v v X

MR v v v x v v v v v v v v
MELS v v v ® v v v JIG NV v v JI7

MEDS ® s v ® v v v v v v v v

ML 3 224 v 3 s v v v v v v v

NC Mil;;gﬁ ® ® ® ® x® ® v v v v v v

NC MBS ® ® % ® 3 3 v v 24 v v v
MERS *® 177 SV VXX v XX 2% v 3 3 24

NC M;:;R's v v v ® ® ® ® ® ® v v ®

M, ® X/ v ® % v % v v XS IR v

NC M;ﬁ;g/ ® ® x® ® ® ® XXX ® A ® ® ®

NC M;‘;,gfw ® ® ® x ® ® XXX ® 2.9 X/ 2.4 x

NC MR Mute x x ® x x x x * x v v x

NC  MERS M ehy % ® x ® x ® ® ® ® I ®

NC MUt pqutdis o x x * ® *® x x * *® XS IR x
b ® 1272 X/ v 2% 2% v XXX XXX 2%

NG Muwsb opicts o ox ® ® ® x x x ® /XX 3 ® x

NC b *® *® ® * * * * ® X/ * *® *
S ® ® X/ ® ® 3 v 4 v v v s
FS ® x X% *® ® v o v v v o
S v v v R 3 3 ® X 557 v v X/
S ® ® X/ ® * 3 XXX X/ o/ ® ® XV
S ® ® x/oo% *® *® XXX X v 272 % X/
FS ® ® X% x® ® x® XV X/ v v X
S ® ® X% x® ® ® X/ X I I X
S ® ® X/ ® * ® ® X X/ ® ® X
S ® ® /% *® ® ® XV A VRS V4 X
S st ® ® X% x® ® *® XV I ® ® X/
S My=usb ©p qu~dis x x X% * ® *® X/ X/ *® ® X/

ioRW 7" lio:RW

computation, 6,172 calls to PROVERIF were made. As PROVERIF may not terminate we set a timeout
at 3 s: Only two scenarios exceeded the timeout limit. For readability, we only display the minimal
or maximal interesting scenarios, and results that are implied by an other scenario are greyed. The
table was completely generated by an automated script to avoid transcription mistakes.
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