Advanced Complexity
TD n°2 : SPACE and NL

Charlie Jacomme

September 20, 2017

Exercise 1: Warm up
Show that the following problems are NL-complete :

1. Deciding if a non-deterministic automaton A accepts a word w.
2. Deciding if a directed graph is strongly connected is NL-complete.
3. Deciding if a directed graph has a cycle.

Solution:

1. The problem is in NL as we can simply guess the path in the automaton corres-
ponding to the word and arrive in an accepting state. To be in logspace, we do
not however guess the whole path at once, but guess transition by transition while
keeping a counter to the current state. Given a graph G, a starting node and an
ending node, we label all the edges with the lettre € in order to create an automaton
A, with initial state (resp. final) the starting (resp. ending) node. Now, REACH is
equivalent to whether A accepts €, we thus reduced REACH to our problem, which
is then NL-complete.

2. The problem is in co — NL (=NL), as we can simply guess two nodes and check that
they are not connected. We once again reduce REACH, so we are given (G, s,t). We
construct G’ by copying G, and for every node i, we add an edge from 7 to s, and
one from t to ¢. This reduction is logspace as we only need one counter for the loop
on the nodes. And finally, G’ is strongly connected if and only if there is a path from
s to t.

3. The problem is in N L, given G we guess an edge (x,y) of the cycle and run REACH
on (G,z,y). We, one last time, reduce REACH. Given (G, s,t), we may create G’
by first adding an edge between t and s, creating a cycle inside G’ if s and ¢ are
connected in G. This is not enough, because G may have other cycles and the
equivalence would not hold. Thus, we must first eliminate all the cycles in G. Let
m be the number of nodes in G. We create m copies of G, which can be seen as m
levels. For every edge from i to j in G, we draw an edge from node i at each level
to node j at the next level. Additionally, we draw an edge from each node ¢ at each
level to node 7 at the next level. We call s’ the s of the first level, and ¢’ the ¢ of the
last level. Now, there is a path from s to ¢ in G if and only if there is path from s’
to t' in G’. Moreover, in G’ path are only "going up" into the levels, so there cannot
be any circle. Thus if we add an edge from ¢’ to s’, we now have that there is a path
from s to ¢ in G if and only if there is a cycle in G’.

Exercise 2: Restrictions of the SAT problem

1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals (called 3-
clauses). In other words, the input is a finite set S of 3-clauses, and the question is whether



S is satisfiable. Show that 3-SAT is NP-complete for logspace reductions (assuming SAT
is).

2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals (called
2-clauses). Show that 2-SAT is in P, using proofs by resolution.

3. Show that 2-UNSAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-complete.
4. Conclude that 2-SAT is NL-complete.

Solution:

1. First, the problem is in NP as a sub case of SAT. We now must be able to transform
any instance of SAT into an instance of 3-SAT. The idea is that we can replace a
clause L; V Ly V C' (C non empty) by the clauses Ly V Ly V z and -z V C' with x
fresh. Indeed, if L1 V Lo V C' can be satisfied, then either L; V Lo can be satisfied,
and then —x V C with = set to false, either Li V Ly cannot be satisfied, thus C' can
and we can set = to true. Conversely, if both clauses are true , if z is true then C' is
true, and if C' is false, L1 or Lg is true. We do this for all the clauses in the formula,
and it yields a 3-SAT formula with the same satisfiability. To conclude, we show that
this transformation can be done in log space. We first read the input to obtain the
number of variables N, and write N +1 on a tape B. Then, we treat each clauses one
after the other, by writing the first variable to a tape B1, the second to a tape B2
and the third to B3. If the clause if over, we write it down directly on the output,
if it is not, we write By V By V z where z is obtained from B. Then, we write # z,
on B1, increment B, and the following variable goes to B2, et caetera et caetera.
This requires 3 logspace tapes for the variables. The counter in B will not exceed
N +n/2 = 0O(n) (with n the number of literal, we at most create one fresh variable
for every two literals), so B is also logspace.

2. From the formula S, we construct a graph G where the nodes are all the variables

in S and their negation. For every clause L V L' we create an edge from —L to L'
and one from =L’ to L. If there is an empty clause, we immediately conclude that S
is not satisfiable. Else, if there is a path from z to -z and one from —x to x, then S
is insatisfiable. Indeed, an edge represent an implication, which must be true in any
model of S, and thus z and —z would need to gave the same value in any model of
S.
If there is no such path, with x1, ..., ¢, the variables of G, we define by induction on
1 <i < n the valuation of x; and a graph G; as follow : Gy = G, and for 1 < i < n,
if there is a path from —z; to x; in G;_1 then we set x; to true and G;?G;_1. Else,
x; is false and G; is G;_1 with an edge between z; to —z;. By induction, we now
show that G; never contains a path going through a variable and its negation. It is
true for Gy by hypothesis, and when G; = G;_1 it is obvious. Else G; is G;_1 with
an edge between x; to —z;, knowing that there is no cycle containing x; and —x;. If
there was a j such that there was a cycle containing x; and —x;, it would need to
use the new arc, and if we assume that the cycle is minimal, then by removing the
new arc we obtain a path from —x; to x; in G;_1 which is a contradiction.

Using this construction, we now show that the valuation satisfies S. Considering the
construction, for every ¢ there is either a path from x; to —x; or the inverse, but
not both at the same time. And the second case occurs when z; is set to false, so
the first one occurs when z; is set to true. Thus, for a litteral L, L is set to true if
and only if there is a path from L to =L, and respectively to false. For each edges
(L,L') of G, if L. was true and L’ false, then we would have a path in G,, from —L
to L and one from L’ to —L, which yields a path 7 from —L to =L’ groing through
L. But by construction, when (L, L") is an arc of G, so is (=L', L), which is then
in G,,. With 7 and this edge, we then have a cycle in G, passing through L and —L
which is a contradiction. Thus, for every edges (L, L") of G , the implication L = L’
is satisfied, i.e all the clauses of S are satisfied.

Page 2



3. We can produce G in lospace, so the unsatisfiability reduces to finding a cycle contai-
ning an x and an —x. It is in NL by guessing x and calling REACH (z,—x) and
REACH (—x,x). For the completness, we reduce REACH and are given (G, s,1).
For every edge (u,v), we create the clause —u V v and then we create the clauses
s and —t. We obtain a set S of clauses. If REACH(G, s, t), then the path yelds an
implication from s to ¢, so ¢t must be true but we have —t, S is unsatisfiable. Else,
we set all the variables accessible from s to true, and the others to false. s and —t
are verified, and v = v also as v is accessible from s if u is, i.e, we obtain a model
for S, which is then satisfiable.

4. 2 — SAT is in co — NL, and so in NL. Moreover, for any language L € NL, L € NL.
So L can be reduced to the the negation of 2-SAT (it is NL-complete). And then,
this logspace reduction is a logspace reduction from L to 2-SAT.

Exercise 3: Space hierarchy theorem
Using a diagonal argument, prove that for two space-constructible functions f and g such
that f(n) = o(g(n)) (and as always f,g > log) we have SPACE(f(n)) C SPACE(g(n)).

Solution:

The proof is actually very tricky, and relies on some small details. I refer you here to
an extensive proof with many details made by a more competent teacher than I am :
https://people.eecs.berkeley.edu/ luca/cs172/noteh.pdf.

Page 3



