Advanced Complexity

TD $n^{\circ}5$

Charlie Jacomme

October 11, 2017

Exercise 1: Unary Languages

1. Prove that if a unary language is NP-complete, then P = NP.

Hint : consider a reduction from SAT to this unary language and exhibit a polynomial time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Exercise 2: On the existence of one-way functions

A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is computable in polynomial time, but f^{-1} is not. Prove that if there exists one-way functions, then

$$A = \{(x, y) \mid f^{-1}(x) < y\} \in (\mathsf{NP} \cap \mathsf{coNP}) \setminus \mathsf{P}$$

Exercise 3: Prime Numbers

- 1. Show that UNARY-PRIME = $\{1^n \mid n \text{ is a prime number }\}$ is in P.
- 2. Show that $PRIME = \{p | p \text{ is a prime number encoded in binary } \}$ is in coNP.
- 3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers to formulate a non-deterministic algorithm runing in polynomial time.

A number p is prime if and only if there exists $a \in [2, p-1]$ such that :

- (a) $a^{p-1} \equiv 1[p]$, and
- (b) for all q prime divisor of p-1, $a^{\frac{p-1}{q}} \neq 1[p]$

To prove that your algorithm runs in polynomial time, you can admit that all common arithmetical operations on $\mathbb{Z}/p\mathbb{Z}$ can be performed in polynomial time.

Exercise 4: Some P-complete problems

Show the following problems to be P-complete :

1. — INPUT : A set X, a binary operator * defined on X, a subset $S \subset X$ and $x \in X$ — QUESTION : Does x belongs to the closure of S with respect to *?

Hint : for the hardness, reduce from Monotone Circuit Value

2. — INPUT : G a context-free grammar, and w a word — QUESTION : $w \in \mathcal{L}(G)$?

Hint : for the hardness, reduce from the previous problem

Exercise 5: P-choice

A language L is said P-peek $(L \in \mathsf{P}p)$ if there is a function $f : \{0,1\}^* \times 0, 1^* \to \{0,1\}^*$ computable in polynomial time such that $\forall x, y \in \{0,1\}^*$:

$$- f(x,y) \in \{x,y\}$$

— if $x \in L$ or $y \in L$ then $f(x, y) \in L$

f is called the peeking function for L.

1. Show that $\mathsf{P}\subseteq\mathsf{P}p$

- 2. Show that $\mathsf{P}p$ is closed under complementary
- 3. Show that if there exist L NP-hard in Pp, then P = NP
- 4. Let $r \in [0, 1]$ a real number, we define L_r as the set of words $b = b_1...b_n \in \{0, 1\}^*$ such that $0, b_1...b_n \leq r$. Show that $L_r \in \mathsf{P}p$
- 5. Deduce that there exist a non-recursive language in $\mathsf{P}p$

Exercise 6: Complete problems for levels of PH

- Show that the following problem is Σ_k^P -complete (under polynomial time reductions).
- $\Sigma_k \mathsf{QBF}: \bullet$ INPUT : A quantified boolean formula $\psi := \exists X_1 \forall X_2 \exists ... Q_k X_k \phi(X_1, ..., X_k)$, where $X_1, ... X_k$ are k disjoint sets of variables, Q_k is the quantifier \forall if k is even, and the quantifier \exists if k is odd, ϕ is a boolean formula over variables $X_1 \cup \cdots \cup X_k$;
- QUESTION : is the input formula true?

Define a similar problem $\Pi_k QBF$ such that $\Pi_k QBF$ is Π_k^P -complete.

Exercise 7: Oracle machines

Let O be a language. A Turing machine with oracle O is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states : $q_{query}, q_{yes}, q_{no}$. Whenever the machine enters the state q_{query} , with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in O$.

We denote by P^O (resp. NP^O) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class \mathcal{C} , we define $\mathsf{P}^{\mathcal{C}} = \bigcup_{O \in \mathcal{C}} \mathsf{P}^O$ (and similarly for NP).

- 1. Prove that for any C-complete language L, $\mathsf{P}^{\mathcal{C}} = \mathsf{P}^{L}$ and $\mathsf{N}\mathsf{P}^{\mathcal{C}} = \mathsf{N}\mathsf{P}^{L}$.
- 2. Show that for any language L, $\mathsf{P}^L = \mathsf{P}^{\bar{L}}$ and $\mathsf{N}\mathsf{P}^L = \mathsf{N}\mathsf{P}^{\bar{L}}$.
- 3. Prove that if $NP = P^{SAT}$ then NP = coNP.

Exercise 8: Collapse of PH

- 1. Prove that if $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \ge 0$ then $\mathsf{PH} = \Sigma_k^P$. (Remark that this is implied by $\mathsf{P} = \mathsf{NP}$).
- 2. Show that if $\Sigma_k^P = \prod_k^P$ for some k then $\mathsf{PH} = \Sigma_k^P$ (*i.e.* PH collapses).
- 3. Show that if PH = PSPACE then PH collapses.
- 4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?

Exercise 9: Relativization

Show that there is an oracle O such that $\mathsf{P}^O = \mathsf{N}\mathsf{P}^O$.