
Advanced Complexity

TD n◦5

Charlie Jacomme

October 11, 2017

Exercise 1 : Unary Languages
1. Prove that if a unary language is NP-complete, then P = NP.

Hint : consider a reduction from SAT to this unary language and exhibit a polynomial
time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Exercise 2 : On the existence of one-way functions
A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is
computable in polynomial time, but f−1 is not. Prove that if there exists one-way functions,
then

A = {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P

Exercise 3 : Prime Numbers
1. Show that UNARY-PRIME = {1n | n is a prime number } is in P.
2. Show that PRIME = {p|p is a prime number encoded in binary } is in coNP.
3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers

to formulate a non-deterministic algorithm runing in polynomial time.
A number p is prime if and only if there exists a ∈ [2, p− 1] such that :
(a) ap−1 ≡ 1[p], and

(b) for all q prime divisor of p− 1, a
p−1
q 6≡ 1[p]

To prove that your algorithm runs in polynomial time, you can admit that all common
arithmetical operations on Z/pZ can be performed in polynomial time.

Exercise 4 : Some P-complete problems
Show the following problems to be P-complete :
1. — INPUT : A set X, a binary operator ∗ defined on X, a subset S ⊂ X and x ∈ X

— QUESTION : Does x belongs to the closure of S with respect to ∗ ?
Hint : for the hardness, reduce from Monotone Circuit Value

2. — INPUT : G a context-free grammar, and w a word
— QUESTION : w ∈ L(G) ?
Hint : for the hardness, reduce from the previous problem

Exercise 5 : P-choice
A language L is said P-peek (L ∈ Pp) if there is a function f : {0, 1}∗ × 0, 1∗ → {0, 1}∗
computable in polynomial time such that ∀x, y ∈ {0, 1}∗ :
— f(x, y) ∈ {x, y}
— if x ∈ L or y ∈ L then f(x, y) ∈ L
f is called the peeking function for L.
1. Show that P ⊆ Pp

1



2. Show that Pp is closed under complementary

3. Show that if there exist L NP-hard in Pp, then P = NP

4. Let r ∈ [0, 1] a real number, we define Lr as the set of words b = b1...bn ∈ {0; 1}∗ such
that 0, b1...bn ≤ r. Show that Lr ∈ Pp

5. Deduce that there exist a non-recursive language in Pp

Exercise 6 : Complete problems for levels of PH
Show that the following problem is ΣP

k -complete (under polynomial time reductions).
ΣkQBF : • INPUT : A quantified boolean formula ψ := ∃X1∀X2∃...QkXkφ(X1, ..., Xk), where

X1, ..Xk are k disjoint sets of variables,Qk is the quantifier ∀ if k is even, and the quantifier
∃ if k is odd, φ is a boolean formula over variables X1 ∪ · · · ∪Xk ;

— QUESTION : is the input formula true ?
Define a similar problem ΠkQBF such that ΠkQBF is ΠP

k -complete.

Exercise 7 : Oracle machines
Let O be a language. A Turing machine with oracle O is a Turing machine with a special
additional read/write tape, called the oracle tape, and three special states : qquery, qyes, qno.
Whenever the machine enters the state qquery, with some word w written on the oracle tape,
it moves in one step to the state qyes or qno depending on whether w ∈ O.
We denote by PO (resp. NPO) the class of languages decided in polynomial time by a deter-
ministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class
C, we define PC =

⋃
O∈C P

O (and similarly for NP).

1. Prove that for any C-complete language L, PC = PL and NPC = NPL.

2. Show that for any language L, PL = PL̄ and NPL = NPL̄.

3. Prove that if NP = PSAT then NP = coNP.

Exercise 8 : Collapse of PH

1. Prove that if ΣP
k = ΣP

k+1 for some k ≥ 0 then PH = ΣP
k . (Remark that this is implied by

P = NP).

2. Show that if ΣP
k = ΠP

k for some k then PH = ΣP
k (i.e. PH collapses).

3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a
QBF formula with at most 10 variables ?

Exercise 9 : Relativization
Show that there is an oracle O such that PO = NPO.

Page 2


