Automates d'arbre

TD $n^{\circ}2$: Decision problems & tree homomorphisms

September 26, 2019

Exercise 1: Recognizing an abstract language.

- 1) Let \mathcal{E} be a finite set of linear terms on $T(\mathcal{F}, \mathcal{X})$. Prove that $Red(\mathcal{E}) = \{C[t\sigma] \mid C \in \mathcal{C}(\mathcal{F}), t \in \mathcal{E}, \sigma \text{ ground substitution}\}$ is recognizable.
- 2) Prove that if \mathcal{E} contains only ground terms, then one can construct a DFTA recognizing $Red(\mathcal{E})$ whose number of states is at most n+2, where n is the number of nodes of \mathcal{E} .

Exercise 2: Decisions problems

We consider the **(GII)** problem (ground instance intersection) : Instance : t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA

Question : Is there at least one ground instance of t accepted by \mathcal{A} ?

- 1) Suppose that t is linear. Prove that **(GII)** is P-complete.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- 3) Prove that **(GII)** is EXPTIME-complete. hint : for the hardness, reduce the intersection non-emptiness problem (admitted to be EXPTIME-complete).
- 4) Deduce that the complement problem :
 Instance : t a term in T(F, X) and linear terms t₁, ..., t_n
 Question : Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Bonus exercise : Direct images of an homomorphism

Let $\mathcal{F} = \{f/2, g/1, a\}$ and $\mathcal{F}' = \{f'/2, g/1, a\}$. Let us consider the tree homomorphism h determined by h_F defined by : $h_{\mathcal{F}}(f) = f'(x_1, x_2), h_{\mathcal{F}}(g) = f'(x_1, x_1), \text{ and } h_{\mathcal{F}}(a) = a$.

- 1. Is $h(\mathcal{T}(\mathcal{F}))$ recognizable?
- 2. Let $L_1 = \{g^i(a) | i \ge 0\}$, then L_1 is a recognizable tree language, is $h(L_1)$ recognizable?